
TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 i

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"

Release 2.2
2019-09-11

Status: Released

LOTAR
Jochen Boy
PROSTEP AG
jochen.boy@prostep.com

Jean-Yves Delaunay
Airbus
jean-yves.delaunay@airbus.com

Rick Zuray
The Boeing Company
richard.s.zuray@boeing.com

Technical
Cullen Simpson
Gulfstream Aerospace
cullen.simpson@gulfstream.com

Jeff Klein
The Boeing Company
jeff.r.klein@boeing.com

© LOTAR

mailto:jochen.boy@prostep.com
mailto:jean-yves.delaunay@airbus.com
mailto:richard.s.zuray@boeing.com
mailto:cullen.simpson@gulfstream.com
mailto:jeff.r.klein@boeing.com

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 ii

Contents
Table of Contents
1 Introduction ... 1

1.1 LOTAR .. 1

1.2 Overview ... 1

1.3 Scope of this document ... 1

1.4 Out Scope of this document .. 1

1.5 Definition of terms ... 2

1.5.1 Detail Node ... 2

1.5.2 Assembly Node ... 2

1.5.3 Hash Value ... 2

1.5.4 AHash Attributes ... 2

1.5.5 CPAH .. 2

1.5.6 AHash Value ... 2

2 References .. 2

3 Node Unique Definition .. 3

3.1 Detail Node ... 3

3.2 Assembly Node ... 3

4 Attribute Validation Properties ... 4

4.1 AHashAttributes .. 4

4.2 AHash ... 4

4.3 BHash and CHash... 5

5 Data Definition ... 5

5.1 Text ... 5

5.1.1 End-Of-Line (CR-LF, LF-CR, LF) .. 5

5.2 Integer ... 6

5.3 Double ... 6

5.4 Date and Time Representations .. 7

5.4.1 Date .. 7

5.4.2 Time (UTC) ... 7

5.4.3 Date Time (UTC) ... 7

6 Hash Identification ... 8

6.1 Hash Algorithm .. 8

6.1.1 SHA-1 ... 8

6.2 Hash Specification... 8

7 Example Product Structure with XML .. 8

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 iii

7.1 Detail Node Examples ... 10

7.1.1 Company Detail .. 10

7.1.2 Industry Standard Detail .. 11

7.2 Assembly Examples .. 12

7.2.1 Assembly Examples with a Single Child .. 12

7.2.2 Assembly Example with Multiple Children ... 14

7.2.3 Assembly Example with Child Positions .. 15

7.2.4 MultiValuated Attribute Examples .. 17

List of Figures

Figure 1 - SAMPLE PRODUCT STRUCTURE ... 3

Figure 2 - EXAMPLE PART VALIDATION XML FORMAT .. 4

Figure 3 - ASSEMBLY HASH FORMULA ... 5

Figure 4 - XML EXAMPLE PRODUCT STRUCTURE ... 9

List of Tables

Table 1 - END-OF-LINE CHARACTERS .. 6

Table 2 - XML TRANSLATION FOR SPECIAL CHARACTERS ... 9

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 iv

Document History

Revision Date Change
1.0 2013-09-23 Initial creation
1.1 2013-10-23 Incorporation of team review feedback
1.2 2013-10-28 Final editorial changes and release for publication
2.0 2019-03-10 Updated based on feedback from Jotne implementation attempt and Gulf-

stream usage.
Modified AHASH calculation for assemblies.
Added allowance for additional hash algorithms.
Added examples for assemblies with positional information of children.
Added examples for multi valuated attributes.
Added examples for CAD and other files along with associated hash
methodology.

2.1 2019-08-15 Eliminated ahash_rank references
Corrected some minor wording in section 7.2.1

2.2 2019-09-11 Added comment in section 1.2 about XML being only an example and that
other formats are acceptable.
Eliminated ahash_rank reference in section 1.5.6
Added reference to Extensible Markup Language (XML) 1.0 (Fifth
Edition)
Corrected a comment about the ahash calculation in 4.2 step 2.
Rewrote section 5.1.1
Changed section 5.3 from Float to Double and provided better references.
Combined Date, Time and Date Time into a single major subsection 5.4
rather than multiple subsections and added definitions for clarity.
Changed Section 6 from Hash Algorithm to Hash Identification. Created
subsections for Algorithm and Specification and updated examples in 7

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 1

1 Introduction

This document is intended to clearly describe the recommendations of the LOTAR PDM Team as
it pertains to product structure validation. The document includes the outcomes of the research
contracted by the LOTAR PDM team. This document, in the future, may be absorbed by, or refer-
enced by the recommended practices that will be developed by the PDM Implementor Forum
(PDM-IF).

1.1 LOTAR
The LOTAR team is an international working group jointly hosted by ASD-Stan and the prostep ivip
association in Europe, and PDES Inc, and AIA in the US. Its aim is to develop a standard de-
signed to provide the capability to store digital product information in a standard neutral form that
can be read and reused throughout its lifecycle, independent of changes in the IT application envi-
ronment originally used to create it. The multi-part standard EN/NAS 9300 covers both the infor-
mation content and the processes required to ingest, store, administer, manage and access the
information.
The scope of this technical report refers to LOTAR Part 210 Edition 1.

1.2 Overview
It is recognized in LOTAR PDM that Product Structures are the key to successful archive and re-
trieval of PDM data. These product structures must be maintained precisely and a proof that this
has been accomplished is required. Product structures can only be reused if the exact product
structure content is known to represent the required structure.

The attribute “validation property” is used to make sure that the part attributes loaded into the sec-
ond PDM (or archive) are the same as the ones extracted from the original PDM (or archive). This
validation property is also used to validate that the node represents a re-usable structure. Often
nodes will have similar names in the archive (Part Number) but are archived for different purposes
(ex: Reference Structure, Manufacturing, Conformity, Design and Construction, Usage, etc.). Typi-
cally, a structure stored for the function of Reference Data is very different from the one stored for
Design and Construction. Each node may also contain different attributes as well depending on
function.

This document defines a method to validate a product structure using hashes of attributes and
hierarchical relationships. The examples in this document are all XML. The algorithm described in
this document will work in any format, but the attribute representations will need to be adjusted
accordingly.

1.3 Scope of this document
This document defines a Recommended Practice for Product Structure validation. The objective is
to validate the product structure of data ingested, extracted or re-used by the archive.

This document defines a method to uniquely identify each node in the product structure and to
uniquely define the structure of each assembly node.

1.4 Out Scope of this document
This document will not provide validation properties for documents; CAD or other.

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 2

1.5 Definition of terms
Some terms used in this document have different meanings in different contexts. Therefore, a def-
inition of how these terms are used in this document is given.

1.5.1 Detail Node
Any part defined in the product structure that has no children specified.

1.5.2 Assembly Node
Any part defined in the product structure that has children specified.

1.5.3 Hash Value
A hexadecimal string created by a standard cryptographic algorithm. The SHA-1 algorithm is what
is referenced in this document. Other Industry Standard hash mechanisms may be used in place
of SHA-1. This hash provides a unique signature that is altered if any of the referenced data dif-
fers. Uniqueness is the goal of this hash signature, not encryption.

1.5.4 AHash Attributes
The list of attributes whose values are concatenated and passed into the hash algorithm to gener-
ate a hash value.

1.5.5 CPAH
The string which results from running the hash algorithm against the concatenated values of the
AHash attributes.

1.5.6 AHash Value
The hash value that will be stored in the XML for each part to validate the package on extract. The
AHash value of a Detail part is equivalent to the CPAH. The AHash value of an Assembly is calcu-
lated from the CPAH of the Assembly and the unique identifiers and quantities of its children as
explained in section 4.2.

2 References
1. Patent Number 4309569 – Method of Providing Digital Signatures – Merkle 01/05/1982
2. Unicode Technical Report #13 – UNICODE NEWLINE GUIDELINES - 11/23/1999
3. The Unicode Standard, Version 4.0
4. FIPS 180-4: Secure Hash Standard (SHS) – NIST – March 2012
5. Extensible Markup Language (XML) 1.0 (Fifth Edition): https://www.w3.org/TR/xml/

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 3

3 Node Unique Definition

Structures are made up of two types of Nodes: Detail and Assembly.

Figure 1 - SAMPLE PRODUCT STRUCTURE

3.1 Detail Node
A Detail Node is defined as any node in the structure that does not have any children in the struc-
ture. Detail Nodes may contain a different set of attributes depending on the type or classification
of Detail part. For instance, details whose type design data is owned by the Company will likely
contain many more significant attributes than Details that represent Industry Standard parts.

Inseparable assemblies and purchased assemblies with no defined product structure would also
be considered detail nodes since the PDM system would not break them down any further.

Detail Nodes can reference files, CAD or otherwise. This reference is not included in this validation
property.

Examples in Figure 1: [2,3] and all [3,x]

3.2 Assembly Node
An Assembly Node is defined as a node that is dependent on other nodes (children).
An Assembly node may have attributes of its own.

Assembly Nodes can reference files, CAD or otherwise. This reference is not included in this vali-
dation property. The referenced files have an independent hash as defined in section 4.3.

Examples in Figure 1: [1,1], [2,1], [2,2]

[1,1]

[2,1]

 [3,1]

[2,2]

[3,2] [3,3] [3,4] [3,5]

[2,3]

[3,2]

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 4

4 Attribute Validation Properties

A list of attributes used to generate the unique attribute hash must be defined. Typically, this in-
cludes all critical attributes for the function that the data is being archived.

The included attributes are concatenated in a specific order as defined by the AHashAttributes
element and then converted to a hash signature using an industry standard algorithm. The algo-
rithm used should be specified.

It is recommended that the validation property be maintained outside the data package for use
when determining re-use of data in the archive or PDM.

<Validation>

<AHashAttributes>PartNumber,Revision,…</AHashAttributes>
<AHash>field value</AHash>
<AHash_Algorithm>SHA1</AHash_Algorithm>
<BHash>field value</BHash>
<BFileName>field value</BFileName>
<BHash_Algorithm>SHA512</BHash_Algorithm>
<CHash>field value</CHash>
<CFileName>field value</CFileName>
<CHash_Algorithm>SHA512</BHash_Algorithm>

</Validation>

Figure 2 - EXAMPLE PART VALIDATION XML FORMAT

4.1 AHashAttributes
AHashAttributes is a list of the attributes that have their values included in the AHash calculation.
This is a subset of the attributes in the part XML files.
The AHash attribute list is defined within the validation section as shown in Figure 2. This element
defines the list of items to be concatenated and the order of the concatenation. It is not the formu-
la, meaning that the field separator is not included in the actual concatenation and neither is the
format. Each attribute is assumed to be a string (Text) by default. Deviation from that default can
be defined by leveraging the “format” specification with each attribute as shown in section 6.2.

4.2 AHash
AHash is the hash value of the node based on the attributes defined by the AHashAttributes value
and the unique identifier for and quantity of its direct children.

The AHash value is calculated using a two-step process.

Step 1: Current Part Attribute Hash (CPAH)

The value is calculated by concatenating all the attribute values listed in the AHashAttrib-
utes values. The values must be order of concatenation is specified in the AHashAttributes
element.

The AHash of a detail node is equal to the CPAH of the object.

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 5

Step 2: Assembly AHash
The AHash of an assembly is the CPAH of the assembly concatenated with a unique key
for each distinct direct child part and its quantity. Each value is separated by a colon. The
unique key for the part can be any combination of recognizable attributes which provide
enough information to uniquely identify that part, such as Part Number and Part Revision or
Part ID and Part Revision. The child information in the concatenated string should be in al-
phanumeric order based on the unique key of each child.

The child AHash values are concatenated in alphanumeric order by AHash value.

CPAH:Child1_ID:Child1_Rev:Child1_Qty:Child2_ID:Child2_Rev:C
hild2_Qty

qty# is a number.

Figure 3 - ASSEMBLY HASH FORMULA

4.3 BHash and CHash
The validation section also contains hash signatures of any files that need to be intrinsically tied to
the object. In the example in Figure 2, BHash is used to provide a SHA512 signature of a PDF file
of the BOM associated to the part and CHash is used to provide a SHA512 signature of the CAD
file associated to the part. The files to validate will be site specific. Their names may be referenced
in the attribute section in the XML or called out explicitly in the validation section.
The SHA512 algorithm is used for files rather than SHA1 due to its greater length but any industry
standard algorithm that ensures file uniqueness may be used and should be specified in the ap-
propriate section of the validation properties as shown in Figure 2.

5 Data Definition
The following data types are used to extend the AHashAttributes beyond the text format.

Data that has a semantic meaning other than simple text can be stored in multiple formats for dif-
fering reasons. To clarify the calculation all semantic data formats will converted to simple text
formats based on the following rules. The data does not need to be stored in this format; this is
only required for calculation of the validation property.

All data should be encoded as UTF-8.
Time and DateTime values should be represented in UTC for purposes of elements that are in-
cluded in the AHash attributes. Local time may be used in the XML for elements that are not in-
cluded in the AHash calculation. Using local time in the AHash calculation would be very difficult to
support validation across multiple sites.

5.1 Text
Encode as stored. This would include all string and integer elements.

5.1.1 End-Of-Line (CR-LF, LF-CR, LF)
There is a wide variety of methodologies in applications for defining the end of line. A consistent
format should be used to represent the end of line character(s) for purposes of calculating the
hash used for validation.

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 6

ISO specifies in ASCII that you can use either CR-LF or just LF. The W3C organization specifies in
section 2.11 End-Of-Line Handling of Extensible Markup Language (XML) 1.0 (Fifth Edition):

To simplify the tasks of applications, the XML processor MUST behave as if it normalized all line
breaks in external parsed entities (including the document entity) on input, before parsing, by
translating both the two-character sequence #xD #xA and any #xD that is not followed by #xA to a
single #xA character.

Both #xA and 0x0A are representations of LF. As indicated above any use of the following encod-
ings in data should be converted to LF for purposes of calculating the validation property. Each
implementation of this specification will need to adjust the End of Line representation in the XML
into the application specific requirements upon loading.

Type Description ASCII HEX ISO 10646-1 [Unicode]
LF Line Feed 0x0A U+000A
VT Vertical Tab 0x0B U+000B
FF Form Feed 0x0C U+000C
CR Carriage Return 0x0D U+000D
CR-LF 0x0D then 0x0A U+000D then U+000A
LF-CR 0x0A then 0x0D U+000A then U+000D
NEL New Line

U+0085

LS Line Separator

U+2028
PS Paragraph Separator

U+2029

Table 1 - END-OF-LINE CHARACTERS

Values other than LF are converted for calculation of the validation property and should be evalu-
ated for interpretation by the endpoint systems. The validation property is not intended to resolve
the meaning of the data, only the consistency.

5.2 Integer

This value is calculated identical to Text, and therefore should not be included in the attribute defi-
nition.

5.3 Double
For purposes of the validation property use the following format:

[-]x.xxxxxxe[-]xxx

Zero should simply be represented as 0.
The first non-zero digit should be to the left of the decimal.
Remove trailing zeros.
Remove a trailing decimal.
Remove leading zeros from the exponent.
When the exponent is zero remove the exponent portion altogether.
The negative symbol is only included when required, positive signs are always suppressed.

https://www.w3.org/TR/xml/#sec-line-ends

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 7

Validation Representation Examples: -1e4, 1.43233e12, 1.278e-3, 1.2e1, 0, 3.4e1, 1.75

Note: When the precision required is beyond the normal default precision of the programming lan-
guage used to convert double values to strings such as CAD part position matrices, the validation
process may need to be defined separately and not included in the AHASH calculation. See ISO
10303 for CAD validation properties.

For representation in the XML follow the Double definition in section 3.2.5 of XML Schema Part 2:
Datatypes Second Edition (https://www.w3.org/TR/xmlschema-2/).

XML Representation Examples: -1e4, -1000, 123.56, -11.2786 1.2, 0, 0.0

Format Name: Double

5.4 Date and Time Representations
Dates and times should be converted to ISO 8601 format for storage in the XML. Further, the Time
and Date Time formats should be converted to UTC prior to calculation of the validation property.
The formats listed below use the following definitions:
YYYY = four-digit year
MM = two-digit month (eg 03=March)
DD = two-digit day of the month (01 through 31)
T = a set character indicating the start of the time element
hh = two digits of an hour (00 through 23, AM/PM not included)
mm = two digits of a minute (00 through 59)
ss = two digits of a second (00 through 59)
mmm = three digits of a millisecond (000 through 999)
TZD = time zone designator (Z or +hh:mm or -hh:mm), the + or - values indicate how far ahead or
behind a time zone is from the UTC (Coordinated Universal Time) zone.
Z is the Time Zone Designation for UTC (Zulu).

5.4.1 Date
YYYY-MM-DD
Example: 2013-02-05 corresponds to February 5th, 2013

Format Name: UTCDate

5.4.2 Time (UTC)
hh:mm:ss.[mmm]TZD

Milliseconds may be dropped if not required in definition.
Example: 13:15:30Z corresponds to 1:15:30 pm UTC (Zulu).

Format Name: UTCTime

5.4.3 Date Time (UTC)
YYYY-MM-DDThh:mm:ss[.mmm]TZD

https://www.w3.org/TR/xmlschema-2/

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 8

Milliseconds may be dropped if not required in definition.
2013-02-05T13:15:30Z corresponds to Feburary 5th, 2013 at 1:15:30pm UTC (Zulu)

Format Name: UTCDateTime

6 Hash Identification
In order to calculate and validate the hash values consistently certain information must be provided
along with the hash signature.

6.1 Hash Algorithm
A hash value must be calculated using a standard cryptographic algorithm to generate a unique
signature (or fingerprint) for a node. The hash value is not intended to encrypt the data, so the fact
that the value is predictable is not relevant.

6.1.1 SHA-1
SHA-1 is used in calculations of the validation property examples in this document, although any
industry standard algorithm that can generate a key to satisfy the requirements for uniqueness
may be used. The standard must be clearly identified in the validation section such that the con-
sumers of the data can regenerate the hash after loading to validate that the data is consistent with
the intent of the archive (e.g <AHash_Algorithm>SHA1</AHash_Algorithm>).

All characters in the calculated hash value must be uppercase.

6.2 Hash Specification
The specification used to dictate the calculation of the hash value must also be included. This may
be a reference to a particular revision of this document, or it may be a company specific document
which provides the recipe for calculation. The company specification may simply reference this
LOTAR specification with any required local modifications. Examples of this reference:
<AHash_Specification>LOTAR TS-9300-200-1_R2.2</AHash_Specification>

<AHash specification=’LOTAR TS-9300-200-1_R2.2’>6D5DB54436A3F72CE2D3D9D4A6992FE6FC83E1EF</AHash>

7 Example Product Structure with XML

The following examples will use the structure identified in Figure 4.

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 9

Figure 4 - XML EXAMPLE PRODUCT STRUCTURE

The XML examples shown below are for illustrative purposes only to show a possible method for
the AHash definition. They are not intended to indicate the XML standard for LOTAR Part 210.
Attributes that have special XML characters such as those shown in Table 2 will either need to be
escaped appropriately in the XML or contained within CDATA tags. Regardless of the method, the
value used to calculate the AHash should be the raw data and not the translated data.

Character Name XML Translation Character Reference Numeric Reference

Ampersand & & &#38;
Less Than < < &#60;
Greater Than > > >
Double Quote " " '
Apostrophe ' ' "

Table 2 - XML TRANSLATION FOR SPECIAL CHARACTERS

An example of wrapping an attribute in CDATA tags is as follows:

 <Property name="Nomenclature">![CDATA[3“ Washer]]</Property>

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 10

In the following examples, some of the attributes defined in the XML are mandatory attributes and
are explicitly called out such as:

 <PartID>AAA_111</PartID>

Other attributes are optional and defined such as:

 <Property name="ProcessCodes" format="Text">AV, GM</Property>

This method allows the XSD to enforce the mandatory attributes while allowing greater flexibility
with the other attributes. The data format definition for the mandatory attributes should be defined
and enforced by the XSD whereas it is explicitly stated on the optional attributes.
The mandatory attributes shown in the examples below are for illustrative purposes only.

7.1 Detail Node Examples

Using the structure above, parts 60X111222D001 and NAS12345 are detail items meaning that
they have no children. As described in section 4.2, the AHash values must be calculated in a bot-
tom up fashion so that a parent assembly’s AHash includes the hash value of its children. For a
detail item, the CPAH (Current Part Attribute Hash) and the AHash are equivalent.

In this example, 60X111222D001 is defined as a “Company Detail” which means that the company
owns the type design for this item. Items defined as “Company Detail” in the example have a dif-
ferent set of attributes used to calculate their AHash values than items that are “Industry Standard
Detail” or “Assembly”.

7.1.1 Company Detail

The XML for 60X111222D001 is as follows:

<Arch_Part>
 <CompanyDetail>
 <Properties>
 <CADFileName>AAA_111.CATPart</CADFileName>
 <CADFileType>CATPart</CADFileType>
 <Nomenclature>COMPANY DETAIL PART 1</Nomenclature>
 <PartID>AAA_111</PartID>
 <PartNumber>60X111222D01</PartNumber>
 <Revision>-</Revision>
 <Property name="CageCode" format="Text">12345</Property>
 <Property name="FastenerQty" format="Text">0</Property>
 <Property name="FinishCodes" format="Text">144, 213</Property>
 <Property name="MasterOfOpposite" format="Text"></Property>
 <Property name="Material" format="Text">AL ALLOY</Property>
 <Property name="PartDisposition" format="Text">60X111111D01,---, REWORK</Property>
 <Property name="ProcessCodes" format="Text">AV, GM</Property>
 <Property name="ReleaseDate" format="Date">2008-11-14</Property>
 <Property name="Status" format="Text">Released</Property>
 </Properties>
 <Validation>
 <AHashAttrib-
utes>CADFileName,CADFileType,CageCode,FastenerQty,FinishCodes,MasterOfOpposite,Material,N
omencla-
ture,PartDisposition,PartID,PartNumber,ReleaseDate,Revision,Status</AHashAttributes>
 <AHash_Algorithm>SHA1</AHash_Algorithm>

<AHash_Specification>LOTAR TS-9300-200-1_R2.2</AHash_Specification>

 <AHash>6D5DB54436A3F72CE2D3D9D4A6992FE6FC83E1EF</AHash>

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 11

 </Validation>
 </CompanyDetail>
</Arch_Part>

The attributes used for the calculation of the AHash are concatenated based on the order specified
in the AHashAttributes element. In this example, the attributes are defined alphabetically by attrib-
ute name but that is not required. Not all attributes defined in the XML need be part of the AHash
calculation, there may be additional non-critical attributes used for informational purposes. The
omission of the attribute in the AHashAttributes string as defined in section 4.1 indicates that it is
not to be used for purposes of the AHash calculation.

Based on the attributes for this part and the AHashAttributes definition, the concatenated string for
this part would be:

“AAA_111.CATPartCATPart123450144, 213AL ALLOYCOMPANY DETAIL PART
160X111111D01,---, REWORKAAA_11160X111222D01AV, GM2008-11-14-Released”

All relevant attributes are concatenated together into a single string which includes any embedded
newlines. The newline in this example is simply a by-product of having to fit on this page rather
than in the actual data. Creating a SHA1 hash of this string yields:

6D5DB54436A3F72CE2D3D9D4A6992FE6FC83E1EF

This has been converted to upper case by convention.

7.1.2 Industry Standard Detail

The XML for NAS12345 is as follows:

<Arch_Part>
 <IndustryStandardDetail>
 <Properties>
 <CADFileName>AAA_444.CATPart</CADFileName>
 <CADFileType>CATPart</CADFileType>
 <Nomenclature>THREADED SCREW</Nomenclature>
 <PartID>AAA_444</PartID>
 <PartNumber>NAS12345</PartNumber>
 <Revision>-</Revision>
 <Property name="CageCode" format="Text">54321</Property>
 <Property name="NonBOM" format="Text">0</Property>
 <Property name="ReleaseDate" format="Date">2008-01-22</Property>
 <Property name="Status" format="Text">Released</Property>
 </Properties>
 <Validation>
 <AHashAttrib-
utes>CADFileName,CADFileType,CageCode,Nomenclature,NonBOM,PartID,PartNumber,ReleaseDate,R
evision,Status</AHashAttributes>
 <AHash_Algorithm>SHA1</AHash_Algorithm>

<AHash_Specification>LOTAR TS-9300-200-1_R2.2</AHash_Specification>

 <AHash>2E648063EDD57A6A3F51EF89EF0D6D4D11B2C3D9</AHash>
 </Validation>
 </IndustryStandardDetail>
</Arch_Part>

Based on the attributes for this part and the AHashAttributes definition, the concatenated string for
this part would be:

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 12

“AAA_444.CATPartCATPart54321THREADED SCREW0AAA_444NAS123452008-01-22-
Released”

Creating a SHA1 hash of this string yields:

2E648063EDD57A6A3F51EF89EF0D6D4D11B2C3D9

Note that there are fewer attributes defined in the AHashAttributes for this type of part than there
are for the Company Detail Part. The capability to define which attributes should be considered by
part type allows for greater flexibility within the system. This can be done by enforcement of man-
datory attributes within a part class by the XSD or by modifying the set of optional attributes and
the decision to include or exclude them from the AHash calculation.

7.2 Assembly Examples

As discussed in section 4.2, the AHash of an assembly is the CPAH of the assembly concatenated
with a unique key for each distinct direct child part and its quantity In this example, Child_ID and
Child_Rev combine to uniquely identify a part object. As discussed in Section 4.2, any combination
of attributes that uniquely identify the object may be used. The following formula is used in the
subsequent examples:

Assembly AHash = CPAH:Child1_ID:Child1_Rev:Child1_Qty:Child2_ID:Child2_Rev:Child2_Qty

The CPAH is the hash value of the attributes of the assembly itself.
The child information in the string should appear in alphanumeric order by child value. This not a
requirement of the SHA1 algorithm, but a necessity for validation purposes as there must be a
known method to rebuild the string.

To enhance readability for the Assembly AHash a delimiter is included in the string that is used to
calculate the final hash value.

7.2.1 Assembly Examples with a Single Child

The XML for 60X111111A001 is as follows:

<Arch_Part>
 <Assembly>
 <Properties>
 <CADFileName>AAA_222.CATProduct</CADFileName>
 <CADFileType>CATProduct</CADFileType>
 <Nomenclature>SUB ASSEMBLY_1</Nomenclature>
 <PartID>AAA_222</PartID>
 <PartNumber>60X111111A001</PartNumber>
 <Revision>-</Revision>
 <Property name="CageCode"format="Text">12345</Property>
 <Property name="FinishCodes" format="Text"></Property>
 <Property name="PartDisposition" format="Text"></Property>
 <Property name="ProcessCodes" format="Text"></Property>
 <Property name="ReleaseDate" format="Date">2008-11-14</Property>
 <Property name="Status" format="Text">Released</Property>
 </Properties>
 <Validation>
 <AHashAttrib-
utes>CADFileName,CADFileType,CageCode,FinishCodes,Nomenclature,PartDisposition,PartID,Par
tNumber,ProcessCodes,ReleaseDate,Revision,Status</AHashAttributes>
 <AHash_Algorithm>SHA1</AHash_Algorithm>

<AHash_Specification>LOTAR TS-9300-200-1_R2.2</AHash_Specification>

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 13

 <AHash> DE8D54C8CFE892ACA486929F20BC7EA7E16144D4</AHash>
 </Validation>
 <CAD_Children>
 <Child>
 <ChildID>AAA_111</ChildID>
 <ChildRevision>-</ChildRevision>
 <ChildQty>1</ChildQty>
 </Child>
 </CAD_Children>
 </Assembly>
</Arch_Part>

The concatenated string to generate the CPAH for this assembly based on the values defined in
the AHashAttributes is:

“AAA_222.CATProductCATProduct12345SUB ASSEMBLY_1AAA_22260X111111A0012008-11-
14-Released”

That string yields a SHA1 value of: E8535916412FCE0931F632D10E33E038F04578EE

To calculate the complete AHash of this assembly, the unique key and quantity of its children must
be combined with its CPAH, which produces the following string:

“E8535916412FCE0931F632D10E33E038F04578EE:AAA_111:-:1”

The SHA1 value of the string above is: DE8D54C8CFE892ACA486929F20BC7EA7E16144D4

This becomes the AHash value of this assembly.

The XML for 60X222222A001 is as follows:

<Arch_Part>
 <Assembly>
 <Properties>
 <CADFileName>AAA_333.CATProduct</CADFileName>
 <CADFileType>CATProduct</CADFileType>
 <Nomenclature>SUB ASSEMBLY_2</Nomenclature>
 <PartID>AAA_333</PartID>
 <PartNumber>60X222222A001</PartNumber>
 <Revision>-</Revision>
 <Property name="CageCode" format="Text">12345</Property>
 <Property name="FinishCodes" format="Text"></Property>
 <Property name="PartDisposition" format="Text"></Property>
 <Property name="ProcessCodes" format="Text"></Property>
 <Property name="ReleaseDate" format="Date">2008-11-14</Property>
 <Property name="Status" format="Text">Released</Property>
 </Properties>
 <Validation>
 <AHashAttrib-
utes>CADFileName,CADFileType,CageCode,FinishCodes,Nomenclature,PartDisposition,PartID,Par
tNumber,ProcessCodes,ReleaseDate,Revision,Status</AHashAttributes>
 <AHash_Algorithm>SHA1</AHash_Algorithm>

<AHash_Specification>LOTAR TS-9300-200-1_R2.2</AHash_Specification>

 <AHash>2FE358CA4EE477C53A8E9AE594A7E0B79AC283FF</AHash>
 </Validation>
 <CAD_Children>
 <Child>
 <ChildID>AAA_444</ChildID>
 <ChildRevision>-</ChildRevision>
 <ChildQty>3</ChildQty>
 </Child>
 </CAD_Children>
 </Assembly>

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 14

</Arch_Part>

The concatenated string to generate the CPAH for this assembly based on the values defined in
the AHashAttributes is:

“AAA_333.CATProductCATProduct12345SUB ASSEMBLY_2AAA_33360X222222A0012008-11-
14-Released”

That string yields a SHA1 value of: 8EECDBB17B821225AB7D79A0C61762514B029455

To calculate the complete AHash of this assembly, the unique key and quantity of its children must
be combined with its CPAH, which produces the following string:

“8EECDBB17B821225AB7D79A0C61762514B029455:AAA_444:-:3”

The SHA1 value of the string above is: 2FE358CA4EE477C53A8E9AE594A7E0B79AC283FF

That becomes the stored AHash value of this assembly.

7.2.2 Assembly Example with Multiple Children

As mentioned above, the calculation method is not really different for multiple children with the
exception that the child information in the string used to generate the AHash must come in alpha-
numeric order based on the unique keys and quantities of the child parts.

The XML for the top assembly in our product structure example is as follows:

<Arch_Part>
 <Assembly>
 <Properties>
 <CADFileName>AAA_123.CATProduct</CADFileName>
 <CADFileType>CATProduct</CADFileType>
 <Nomenclature>TOP ASSEMBLY</Nomenclature>
 <PartID>AAA_123</PartID>
 <PartNumber>60X123456N001</PartNumber>
 <Revision>-</Revision>
 <Property name="CageCode" format="Text">12345</Property>
 <Property name="FinishCodes" format="Text"></Property>
 <Property name="PartDisposition" format="Text"></Property>
 <Property name="ProcessCodes" format="Text"></Property>
 <Property name="ReleaseDate" format="Date">2008-11-14</Property>
 <Property name="Status" format="Text">Released</Property>
 </Properties>
 <Validation>
 <AHashAttrib-
utes>CADFileName,CADFileType,CageCode,FinishCodes,Nomenclature,PartDisposition,PartID,Par
tNumber,ProcessCodes,ReleaseDate,Revision,Status</AHashAttributes>
 <AHash_Algorithm>SHA1</AHash_Algorithm>

<AHash_Specification>LOTAR TS-9300-200-1_R2.2</AHash_Specification>

 <AHash>74E795F5F0E71A0CF538370A96C63D24025728C3</AHash>
 </Validation>
 <CAD_Children>
 <Child>
 <ChildID>AAA_222</ChildID>
 <ChildRevision>-</ChildRevision>
 <ChildQty>1</ChildQty>
 </Child>
 <Child>
 <ChildID>AAA_333</ChildID>
 <ChildRevision>-</ChildRevision>

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 15

 <ChildQty>1</ChildQty>
 </Child>
 </CAD_Children>
 </Assembly>
</Arch_Part>

The concatenated string to generate the CPAH for this assembly based on the values defined in
the AHashAttributes is:

“AAA_123.CATProductCATProduct12345TOP ASSEMBLYAAA_12360X123456N0012008-11-14-
Released”

That string yields a SHA1 value of:
2BFF3643CF930C0CCBB5F0CB17749FA93DDED79D

To calculate the complete AHash of this assembly, the unique key and quantity of its children must
be combined with its CPAH, which produces the following string:

“2BFF3643CF930C0CCBB5F0CB17749FA93DDED79D:AAA_222:-:1:AAA_333:-:1”

The SHA1 value of the string above is:
74E795F5F0E71A0CF538370A96C63D24025728C3

This becomes the stored AHash value of this assembly.

Note that the child information in the string used to calculate the AHash are in alphanumeric order.
The value “AAA_222” comes before “AAA_333” in the alphanumeric sort order.

7.2.3 Assembly Example with Child Positions
The examples up to this point assume the assemblies have physical files that provide the position-
al information for their children. Positional shifts of the children would be detected in a change to
the hash value of the assembly product file. If however, the assemblies in the PDM system do not
have a physical file representation then the positional information is required in the XML. In the
latter case, the positional information should be calculated in the AHASH by some means. This
can be implemented by generating an additional hash of the positional information for each child
instance and combining it with the unique key. An alternative approach is to calculate a position
hash for each child instance and storing that with each instance. These hash values must be vali-
dated on extract to ensure correct positioning.

An example showing the positional information for a child follows:

<Arch_Part>

 <Assembly>

 <Properties>

 <CADFileName>AAA_456.CATProduct</CADFileName>

 <CADFileType>CATProduct</CADFileType>

 <Nomenclature>TOP ASSEMBLY</Nomenclature>

 <PartID>AAA_456</PartID>

 <PartNumber>60X123456N003</PartNumber>

 <Revision>-</Revision>

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 16

 <Property name="CageCode" format="Text">12345</Property>

 <Property name="FinishCodes" format="Text"></Property>

 <Property name="PartDisposition"format="Text"></Property>

 <Property name="ProcessCodes" format="Text"></Property>

 <Property name="ReleaseDate" format="Date">2008-11-14</Property>

 <Property name="Status" format="Text">Released</Property>

 </Properties>

 <Validation>

 <AHashAttrib-
utes>CADFileName,CADFileType,CageCode,FinishCodes,Nomenclature,PartDisposition,PartID,Par
tNumber,ProcessCodes,ReleaseDate,Revision,Status</AHashAttributes>

 <AHash_Algorithm>SHA1</AHash_Algorithm>

<AHash_Specification>LOTAR TS-9300-200-1_R2.2</AHash_Specification>

 <AHash>8DD0F3B74CC7CA9122BBC7B0F9D69B7A2A89BD66</AHash>

 </Validation>

 <CAD_Children>

 <Child>

 <ChildID>AAA_444</ChildID>

 <ChildRevision>-</ChildRevision>

 <ChildQty>2</ChildQty>

 <ChildInstances>

 <ChildInstance>

 <ChildInstanceID>AAA_444.1</ChildInstanceID>

 <RelativePosition>

 <Rot00>1</Rot00>

 <Rot01>0</Rot01>

 <Rot02>0</Rot02>

 <Rot10>0</Rot10>

 <Rot11>1</Rot11>

 <Rot12>0</Rot12>

 <Rot20>0</Rot20>

 <Rot21>0</Rot21>

 <Rot22>1</Rot22>

 <Tra0>5.00345</Tra0>

 <Tra1>13</Tra1>

 <Tra2>6</Tra2>

 </RelativePosition>

 </ChildInstance>

 <ChildInstance>

 <ChildInstanceID>AAA_444.2</ChildInstanceID>

 <RelativePosition>

 <Rot00>1</Rot00>

 <Rot01>0</Rot01>

 <Rot02>0</Rot02>

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 17

 <Rot10>0</Rot10>

 <Rot11>1</Rot11>

 <Rot12>0</Rot12>

 <Rot20>0</Rot20>

 <Rot21>0</Rot21>

 <Rot22>1</Rot22>

 <Tra0>18.04555 </Tra0>

 <Tra1>13</Tra1>

 <Tra2>6</Tra2>

 </RelativePosition>

 </ChildInstance>

 </ChildInstances>

 </Child>

 </CAD_Children>

 </Assembly>

</Arch_Part>

In the example above, the CPAH is:
5C43B0C94D03917CD9E2ADFBF818C97A2D41BACF
To factor the child positions into the AHash the CPAH of the assembly is combined with the child
instance ids and positional values strung together. Using this string:
5C43B0C94D03917CD9E2ADFBF818C97A2D41BACF:AAA_444.1:1.000:0:0:0:1:0:0:0:1:5.00034
5:13:6:AAA_444.2:1.000:0:0:0:1:0:0:0:1:1804555:13:6

The resultant SHA1 AHash value for the assembly is:
8DD0F3B74CC7CA9122BBC7B0F9D69B7A2A89BD66

7.2.4 MultiValuated Attribute Examples

In the example below, a property has been defined for General Notes which is stored as a single
XML item that contains embedded XML. Since there are special XML characters embedded in the
property text they must be converted as indicated as described in Table 2 in order to generate
compliant XML.

<Arch_Part>

 <Assembly>

 <Properties>

 <CADFileName>AAA_555.CATProduct</CADFileName>

 <CADFileType>CATProduct</CADFileType>

 <Nomenclature>SUB ASSEMBLY_2</Nomenclature>

 <PartID>AAA_555</PartID>

 <PartNumber>60X222222A001</PartNumber>

 <Revision>-</Revision>

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 18

 <Property name="CageCode" format="Text">12345</Property>

 <Property name="FinishCodes" format="Text"></Property>

 <Property name="PartDisposition" format="Text"></Property>

 <Property name="ProcessCodes" format="Text"></Property>

 <Property name="ReleaseDate" format="Date">2008-11-14</Property>

 <Property name="Status" format="Text">Released</Property>

 <Property name="GeneralNotes" value="<Notes
name="GENERAL_NOTES"><Note name="G1">FINISH AND PROCESS
CODES IN ACCORDANCE WITH COMPANY STANDARDS UNLESS OTHERWISE SPECI-
FIED</Note><Note name="G2">DIMENSIONS AND TOLERANCES PER ASME
Y14.5M-1994</Note><Note name="G3">UNLESS OTHERWISE SPECIFIED, TOL-
ERANCES ARE IN INCHES</Note></Notes>"/>

 </Properties>

 <Validation>

 <AHashAttrib-
utes>CADFileName,CADFileType,CageCode,FinishCodes,Nomenclature,PartDisposition,PartID,Par
tNumber,ProcessCodes,ReleaseDate,Revision,Status</AHashAttributes>

 <AHash_Algorithm>SHA1</AHash_Algorithm>

<AHash_Specification>LOTAR TS-9300-200-1_R2.2</AHash_Specification>

 <AHash>C70DAA823711978AFB9B608F4B11643C62AF1DA4</AHash>

 </Validation>

 <CAD_Children>

 <Child>

 <ChildID>AAA_444</ChildID>

 <ChildRevision>-</ChildRevision>

 <ChildQty>3</ChildQty>

 </Child>

 </CAD_Children>

 </Assembly>

</Arch_Part>

The example below shows an alternate method of representing the same object wherein each mul-
tivaluated attribute record is represented as an individual property.

<Arch_Part>

 <Assembly>

 <Properties>

 <CADFileName>AAA_555.CATProduct</CADFileName>

 <CADFileType>CATProduct</CADFileType>

 <Nomenclature>SUB ASSEMBLY_2</Nomenclature>

 <PartID>AAA_555</PartID>

 <PartNumber>60X222222A001</PartNumber>

 <Revision>-</Revision>

 <Property name="CageCode" format="Text">12345</Property>

 <Property name="FinishCodes" format="Text"></Property>

 <Property name="PartDisposition" format="Text"></Property>

TECHNICAL SPECIFICATION
"PRODUCT STRUCTURE VALIDATION"
Release 2.2, 2019-09-11

 19

 <Property name="ProcessCodes" format="Text"></Property>

 <Property name="ReleaseDate" format="Date">2008-11-14</Property>

 <Property name="Status" format="Text">Released</Property>

 <Property name="GeneralNote" note_number="G1" format="Text">FINISH AND PROCESS
CODES IN ACCORDANCE WITH COMPANY STANDARDS UNLESS OTHERWISE SPECIFIED</Property>

 <Property name="GeneralNote" note_number="G2" format="Text">DIMENSIONS AND TOLER-
ANCES PER ASME Y14.5M-1994</Property>

 <Property name="GeneralNote" note_number="G3" format="Text">UNLESS OTHERWISE SPECI-
FIED, TOLERANCES ARE IN INCHES</Property>

 </Properties>

 <Validation>

 <AHashAttrib-
utes>CADFileName,CADFileType,CageCode,FinishCodes,Nomenclature,PartDisposition,PartID,Par
tNumber,ProcessCodes,ReleaseDate,Revision,Status</AHashAttributes>

 <AHash_Algorithm>SHA1</AHash_Algorithm>

<AHash_Specification>LOTAR TS-9300-200-1_R2.2</AHash_Specification>

 <AHash>C70DAA823711978AFB9B608F4B11643C62AF1DA4</AHash>

 </Validation>

 <CAD_Children>

 <Child>

 <ChildID>AAA_444</ChildID>

 <ChildRevision>-</ChildRevision>

 <ChildQty>3</ChildQty>

 </Child>

 </CAD_Children>

 </Assembly>

</Arch_Part>

	1 Introduction
	1.1 LOTAR
	1.2 Overview
	1.3 Scope of this document
	1.4 Out Scope of this document
	1.5 Definition of terms
	1.5.1 Detail Node
	1.5.2 Assembly Node
	1.5.3 Hash Value
	1.5.4 AHash Attributes
	1.5.5 CPAH
	1.5.6 AHash Value

	2 References
	3 Node Unique Definition
	3.1 Detail Node
	3.2 Assembly Node

	4 Attribute Validation Properties
	4.1 AHashAttributes
	4.2 AHash
	4.3 BHash and CHash

	5 Data Definition
	5.1 Text
	5.1.1 End-Of-Line (CR-LF, LF-CR, LF)

	5.2 Integer
	5.3 Double
	5.4 Date and Time Representations
	5.4.1 Date
	5.4.2 Time (UTC)
	5.4.3 Date Time (UTC)

	6 Hash Identification
	6.1 Hash Algorithm
	6.1.1 SHA-1

	6.2 Hash Specification

	7 Example Product Structure with XML
	7.1 Detail Node Examples
	7.1.1 Company Detail
	7.1.2 Industry Standard Detail

	7.2 Assembly Examples
	7.2.1 Assembly Examples with a Single Child
	7.2.2 Assembly Example with Multiple Children
	7.2.3 Assembly Example with Child Positions
	7.2.4 MultiValuated Attribute Examples

