

SESE TOUR 2022

Systems Engineering for a Sustainable World

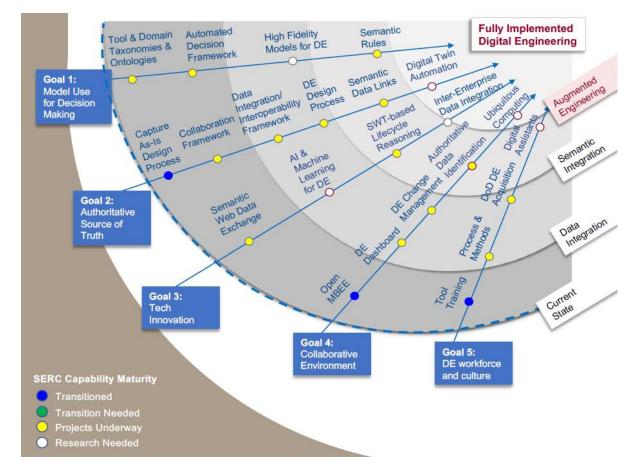
Making engineering work products available in the long term through contextbased interoperability

May 9th, 2022

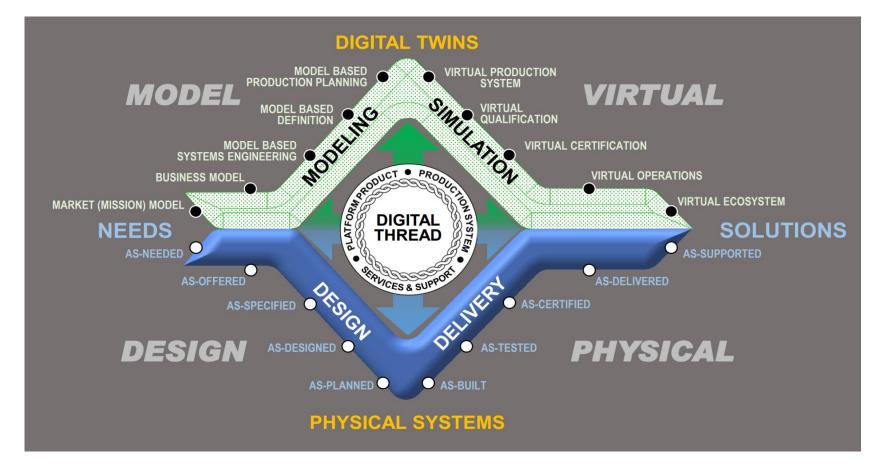
Biography

Juan Carlos Mendo

- He is Systems Engineer Model-Based Engineering, Boeing Research & Technology. As part of the Model-Based Engineering (MBE) team in Boeing R&D, Juan Carlos has been leading as a Product Owner several projects with focus on Data Interoperability and Digital Thread, digital collaboration with suppliers using Technical Data Packages (TDP) and Data Interoperability Standard Implementation. He has led multiple initiatives for commercial and defense products and customers with the end goals of transitioning to Model Based Systems Engineering (MBSE) and Model Based Development (MBD) at Boeing.
- Learn more: <u>https://www.linkedin.com/in/jcmendo/</u>
- Assoc. Prof. Jose María Alvarez Rodríguez


- He is Associate Professor within the Department of Computer Science and Engineering of Carlos III University of Madrid (UC3M). He is Master of Computer Science (2007) and Bachelor of Computer Science (2005) by the University of Oviedo. He has also participated in more than 30 research projects in different competitive programmes and he is the author of more than 80 publications and other research works. He is member of some standardization bodies such as ISO (Artificial Intelligence working group), OMG, ProSTEP, LOTAR, INCOSE (ontologies working group) and INCOSE.
- (Spain).Learn more: <u>http://www.josemalvarez.es/web/</u>

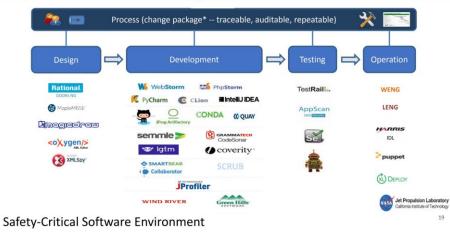
Agenda / Structure of the presentation


- 1. Digital thread: digitalization of the engineering lifecycle
- 2. Capturing the collaborative systems engineering context
- 3. Overview of LOTAR
- 4. Case Study: linking requirements and physical models
- 5. Conclusions and Future steps

• Source: <u>https://www.researchgate.net/publication/340649785_AI4SE_and_SE4AI_A_Research_Roadmap</u>



Source: Boeing

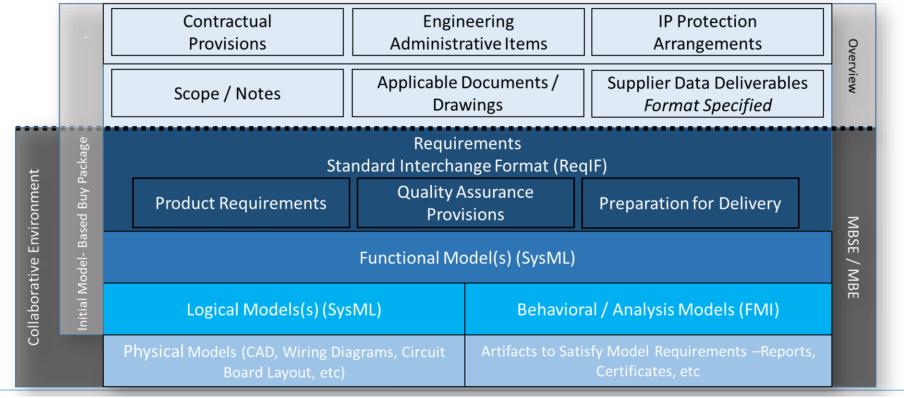

Lifecycle processes

Engineering (and corporate) environment

http://www.ices.kth.se/upload/events/13/84404189f85d41a6a7d1cafd0d b4ee80.pdf

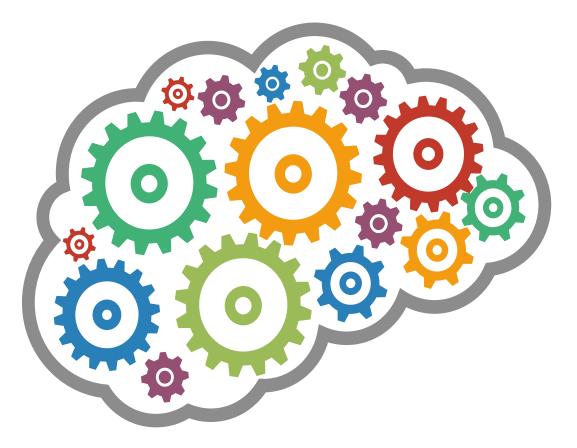
Source: https://www.nist.gov/system/files/documents/2019/04/05/14_delp.pdf

DATE


SESE TOUR 2022 _ May 9 to 11 "Systems Engineering in a Sustainable World"

	Type of Exchange	Description	Examples		
Increased Collaboration	Full Collaboration	Multiple parties use a common configuration management system	Access to single hosted corporate network Cloud environment	1	
	Model Interoperability	Model Interoperability Multiple parties augment the same digital model		Improve	
	Digital Data Exchange	Using data translation tools for consumption	Supplier Requirements Exchange (SRX) System Cameo Inter-op	Digital Thread	
	Data Hand-Off	Standard practice for documents	Email		

Source: Boeing-McGowan-FrameworkForDevelopingMod-MBSE-Open (GDPIS-SUMMIT 2019)



- Utilization of electronically readable industry standard formats for consumption
- Selection of models for collaborative development based on business case

Source: Boeing-McGowan-FrameworkForDevelopingMod-MBSE-Open (GDPIS-SUMMIT 2019)

Automation

Requirement identification and generation Model population Documentation and compliance

Traceability

Recovery traces Consistency checking

Models

Integration and exchange Link logical (descriptive) ←→physical (analytical) Reuse

Simulation

Configuration

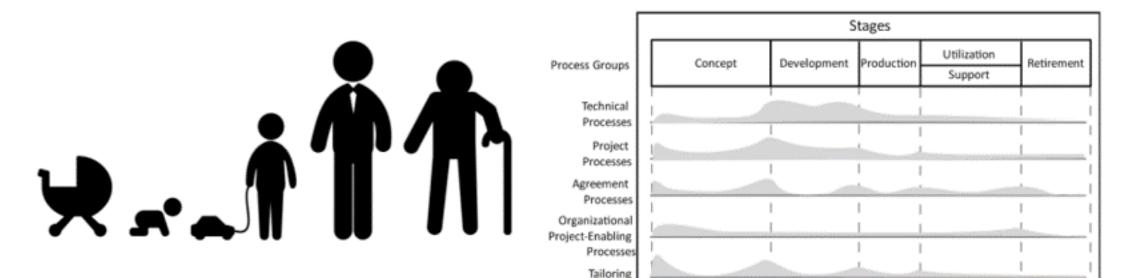
Orchestration

Link

V&V Quality (CCC) Information sharing with providers

Configuration Management

Evolution and information sharing



DATE

SESE TOUR 2022 _ May 9 to 11 "Systems Engineering in a Sustainable World"

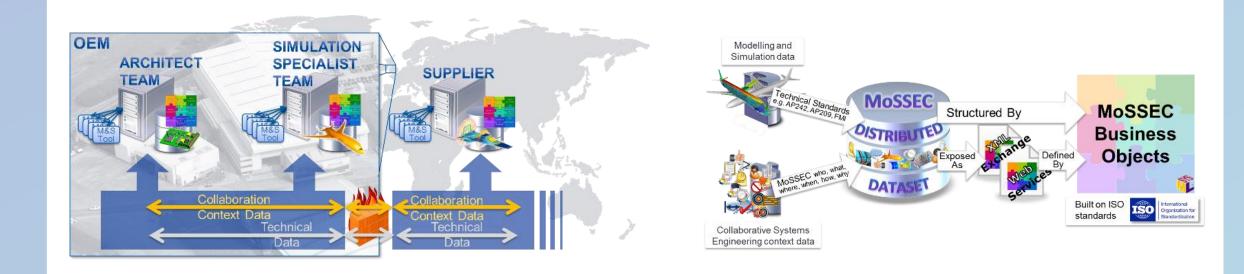
Life cycle

System life cycle

DATE

SESE TOUR 2022 _ May 9 to 11 "Systems Engineering in a Sustainable World"

Processes


Capturing the collaborative systems engineering context

Source: "Traceability across domains, platforms and organizations", White Paper MoSSEC ed1 - v1.0, 2016.

"Modelling and Simulation information in a collaborative Systems Engineering Context" (ISO 10303-243 – MoSSEC)

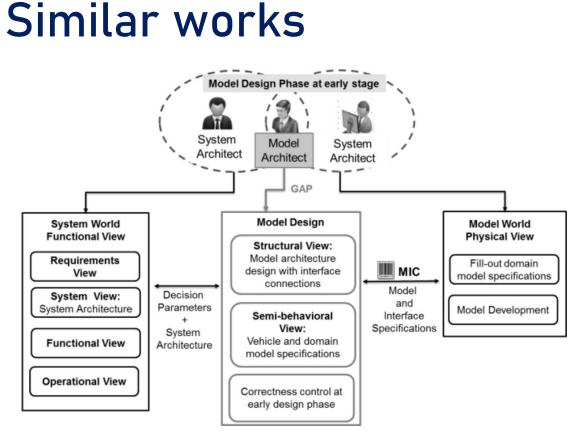


Fig. 1. Research Gap in Collaborative Model Development Process

https://download.afnet.fr/ASD2019/ASD2019-07-MouadhYagoubi.pdf

https://hal.archives-ouvertes.fr/hal-01184938/document

	MIC CLASSES AND THEIR ATTRI	BUTES		
Attributes	Remarques	Туре	Example	Main Classes
Generic Name *	Physical componant regroupment	String	Engine	
Specific Name *	Unique identifier		Compressor 7V16	Object Description
Granularity Level *	List(System/Sub-system/Componant)	String	Sub-System	Ē
Developer Name *		String	F.Ravet	es
Model Version no. *	x.x format	Float	0.1	1
Creation Date		Date	14/03/2013	jec
Documentation	Attached technical report	String		ଟ
Image	Attached references image	Image		
Model Dimension	List (0D-3D, mix)	String	1D	
Chosen Method	List (Finite Volumes, Finite Elements, Finite Difference, OD)	String	Finite Difference	
Physical Equations	List (Chemistry, Dynamic behavior of materials, Maxwell, Navier-Stokes, Strength of materials, Electric, Signal, Runge Kutta)	String	Navier-Stokes	pot
Integrated Solver	List (Controllable Pitch, Fixed Pitch, Without Solver)	String		Method
Time Step	List (Second, Minute, Mili-second, Hour, Steady state)	String	Second	
Linearity	List (No/Yes)	String	No	
Discontunity	List (Yes, No)	String	Yes	
Name of Compilator	List ()	String	Yes	
Time Computation	List (Elapsed Time / Real Time)	String	Elapsed Time	
Scalability	List (Yes/No)	String	Yes	ee Be
Tool Name	List (Amesim, Matlab Simulink, GT-Power, Modelica)	String	GT-Power	Usage
Tool Version	x.x format	String	7,3	1
Hardware Requirements	CPU, OS etc	String		
Accuracy	Requested/Provided Accuracy	Float	%+-5	
Robustness	Requested/Provided Robustness	String	1	
Software (Code) Verification	List (Candidat/Development/Previous/Refere nce)	String		Model Quality
Solution (Mathematical) Verification	Level 1(Poor), Level2 (Satisfactory), Level3 (Good), Level4 (Excellent)	String		Model
Validation	Level 1(Poor), Level2 (Satisfactory), Level3 (Good), Level4 (Excellent)	String		

DATE

SESE TOUR 2022 _ May 9 to 11 "Systems Engineering in Sustainable World"

LOng Term Archiving and Retrieval

LOTAR is Enabled by Standards

- MBSE Justification: Safety, Accident Investigations, Maintenance, Regulations, Obsolescence
- Assume Application versions 3yr; storage/access 10yrs; translate to stable formats for 50yr product cycles.

January 28, 2018 www.incose.org/IW2019

Developing LOTAR 5xx standards

The structure of the family, organized in a series of parts, NAS 9300:

- Part 500: Fundamentals and Concepts for long term archiving and retrieval of Model-Based Systems Engineering information
- Part 510: Long term archiving and retrieval of Requirement management "text, graphics, table based" and "parameter based" information
- Part 515: Long term archiving and retrieval of Validation and Verification "text based" and "parameter based" information (expanding Part 515)
- Part 520: Long term archiving and retrieval of analytical models described by specification or executable code, containing differential, algebraic and discrete equations
- Part 530: Long term archiving and retrieval of models defined using architecture description languages (ADLs), ISO 42010, e.g. industry standards: AADL, SysML, UML etc.

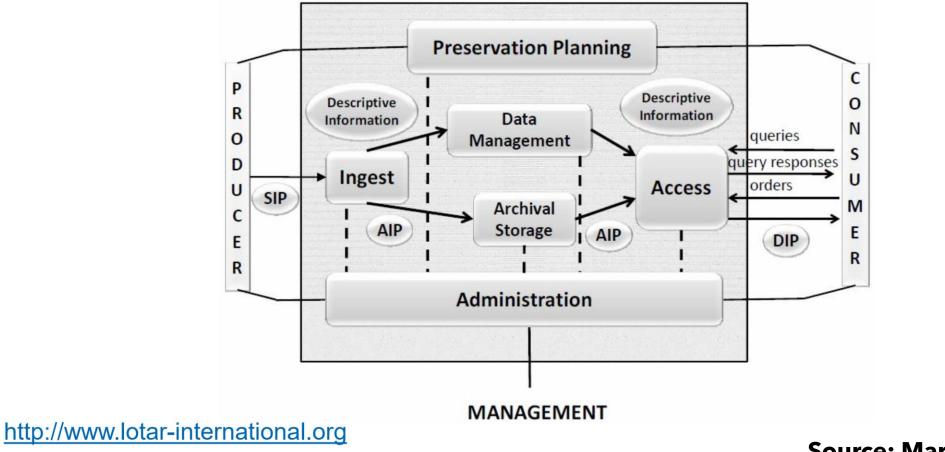
January 28, 2018 www.incose.org/IW2019 (proposed)

GOAL: Retrieval using a standard data representation and available tools

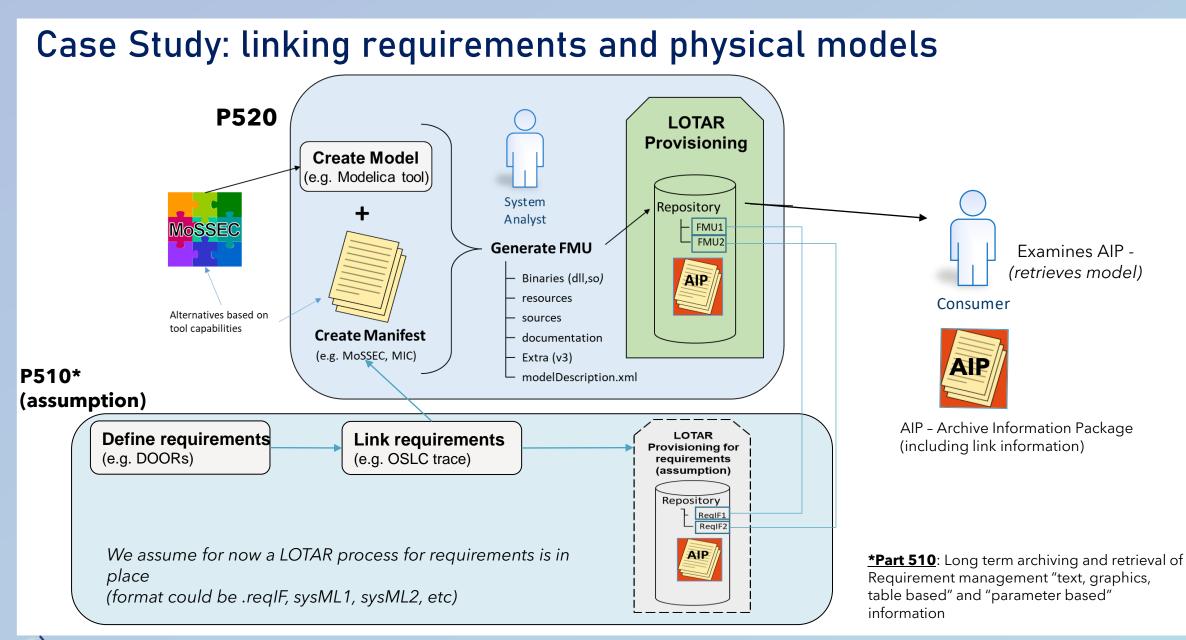
WHAT: Basis for Certification/Qualification, After-market Support Customer Services, Field and Accident Investigations, Part Obsolescence, Design Reuse, New Technology Development

DATA: Systems Architecture not captured on schematics, the LBOM, Requirements traceability, software function

HOW: Capture the Object model, relationships, and metadata



OPEN ARCHIVAL INFORMATION SYSTEM



OASIS reference model - ISO 14721

Key Aspect	ReqIF	OSLC RM	SysML Requirement Diagram	FMI/FMU
Communication protocol	File	HTTP Service	File /	File
	(distribution as a zip file)		HTTP Service in SysMLV2	(distribution as a zip file)
Syntax	XML	RDF/XML	XML	XML and other formats
		(and other RDF serialization formats)	(serialization may change depending on the tool)	depending on the content of the package
			JSON (SysML V2)	
Semantics	XML Schema	OSLC RM Shape	SysML metamodel	XML Schema
	(depending on the end user)	(common attributes)		
Identification	Unique global identifiers	HTTP URIs	Unique identifiers	Unique global identifiers
	Managed by the tool	Managed by the service provider	Managed by the tool	Managed by the tool
Linking	Local/Global	Local/Global	Local/Global	Local/Global
Content	Defined by the tool (e.g.	OSLC RM Vocabulary +	Defined by the tool	Defined by the tool (parameters,
	enriched text)	Defined by the tool (e.g. enriched text)	(e.g. enriched text)	variables, etc. required for the simulation in the different configuration files: model description, etc.)
Non-functional: maturity, evolution, community, etc.	Mature, Standard, Community			

- Define and use a **core P5XX metadata set**, extracted from P520
- Add OSLC RM as initial subset of extended requirements properties

Prefixed Name	Occurs	Read-only	Value-type	Representation	Range	Description
dcterms:contributor	Zero-or-many	unspecified	AnyResource	Either	oslo:AnyResource	Contributor(s) to resource (reference: Dublin Core). It is likely that the target resource will be an fost: Person but that is not necessarily the case.
doterns:created	Zero-or-one	true	dateTime	NA	Unspecified	Timestamp of resource creation (reference: Dublin Core).
determs:creator	Zero-or-many	unspecified	AnyResource	Either	oslc:AnyResource	Creator(s) of resource (reference: Dublin Core). It is likely that the target resource will be an <i>seaf: Person</i> but that is not necessarily the case.
determs:description	Zero-or-one	unspecified	XMLLiteral	NA	Unspecified	Descriptive text (reference: Dublin Core) about resource represented as rich text in XHTML content. SHOULD include only content that is valid and suitable inside an XHTML
dcterns:identifier	Zero-or-one	true	string	NA	Unspecified	An identifier for a resource. This identifier may be unique with a scope that is defined by the RM provider. Assigned by the service provider when a resource is created. Not intended for end-user d
dcterms:modified	Zero-or-one	true	dateTime	NA	Unspecified	Timestamp last resource modification (reference: Dublin Core).
doterns:subject	Zero-or-many	false	string	NA	Unspecified	Tag or keyword for a resource. Each occurrence of a dcterms subject property denotes an additional tag for the resource.
doterns:title	exactly-one	unspecified	XMLLiteral	N/A.	Unspecified	Title (reference: Dublin Core) of the resource represented as rich text in XHTML content. sHould include only content that is valid inside an XHTML element.
oslo_rm:affectedBy	Zero-or-many	false	Resource	Reference	oslc:Any@esource	The subject is affected by the object, such as a defect or issue.
osle_rm:constrainedBy	Zero-or-many	false	Resource	Reference	osle:AnyResource	The subject is constrained by the object. For example, a functional requirement is constrained by a safety requirement.
oslo_rm:constrains	Zero-or-many	false	Resource	Reference	oslo:Any@esource	The object is constrained by the subject.
oslo_rm:decomposedBy	Zero-or-many	false	Resource	Reference	oslc:Any@esource	The subject is decomposed by the object. For example, a system requirement is decomposed into a collection of system requirements.
oslo_xm:decomposes	Zero-or-many	false	Resource	Reference	oslc:AnjResource	The object is decomposed by the subject.
oslo_rm:elaboratedBy	Zero-or-many	false	Resource	Reference	oslo:Anj@esource	The subject is elaborated by the object. For example, a user requirement is elaborated by use case.
oslo_rm:elaborates	Zero-or-many	false	Resource	Reference	oslc:Any@esource	The object is elaborated by the subject.
oslo_rm:implementedBy	Zero-or-many	false	Resource	Reference	oslc:AnyResource	Resource, such as a change request, which implements this requirement.
oslo_rm:satisfiedBy	Zero-or-many	false	Resource	Reference	oslo:Anj@esource	The subject is satisfied by the object. For example, a user requirement is satisfied by a system requirement.
oslo_rm:satisfies	Zero-or-many	false	Resource	Reference	oslo:Any@esource	The object is satisfied by the subject.
oslo_rm:specifiedBy	Zero-or-many	false	Resource	Reference	osle:AnyResource	The subject is specified by the object. For example, a requirement is elaborated by a model element.
oslo_rm:specifies	Zero-or-many	false	Resource	Reference	oslo:AnjResource	The object is specified by the subject.
oslo_rm:trackedBy	Zero-or-many	false	Resource	Reference	oslc:Any@esource	Resource, such as a change request, which tracks this requirement.
oslc_rm:validatedBy	Zero-or-many	false	Resource	Reference	oslc:AnyResource	Resource, such as a test case, which validates this requirement.
oslo:instanceShape	Zero-or-one	unspecified	Resource	Reference	oslo:ResourceShape	Resource Shape that provides hints as to resource property value-types and allowed values
oslo:serviceProvider	Zero-or-many	unspecified	Resource	Reference	oslo:ServiceProvider	The scope of a resource is a URI for the resource's OSLC Service Provider
osle:shortTitle	Zero-or-one	unspecified	XMLLiteral	NA	Unspecified	Short name identifying a resource, often used as an abbreviated identifier for presentation to end-users. SHOULD include only content that is valid inside an XHTML element.
rdf:type	Zero-or-many	unspecified	Resource	Reference	Unspecified	The resource type URIs.

 Add Requirements quality and requirements V&V metadata based on relevant standards such as ISO/IEC/IEEE 29148

- Inherit elements and properties of the previous P5xx (e.g. existing P520)
- Inherit elements and properties from existing standards/specifications like OSLC Requirements Management for Requirements Collection
- Consider the key elements of the Requirements Engineering Process (types and properties)

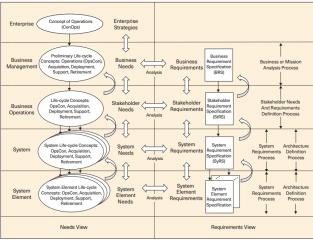
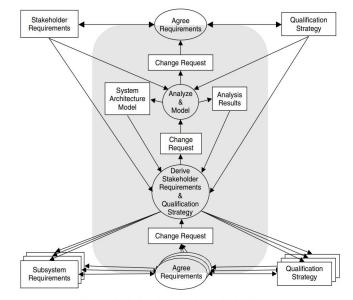
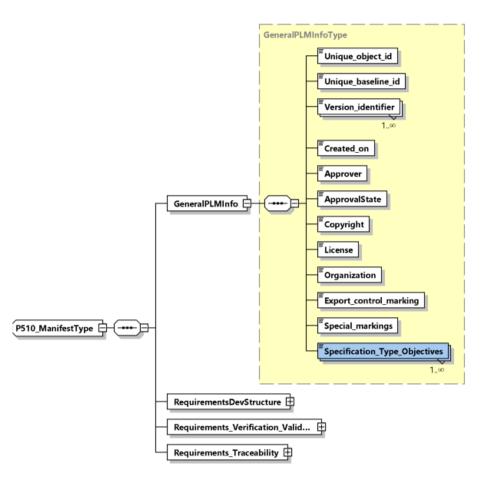
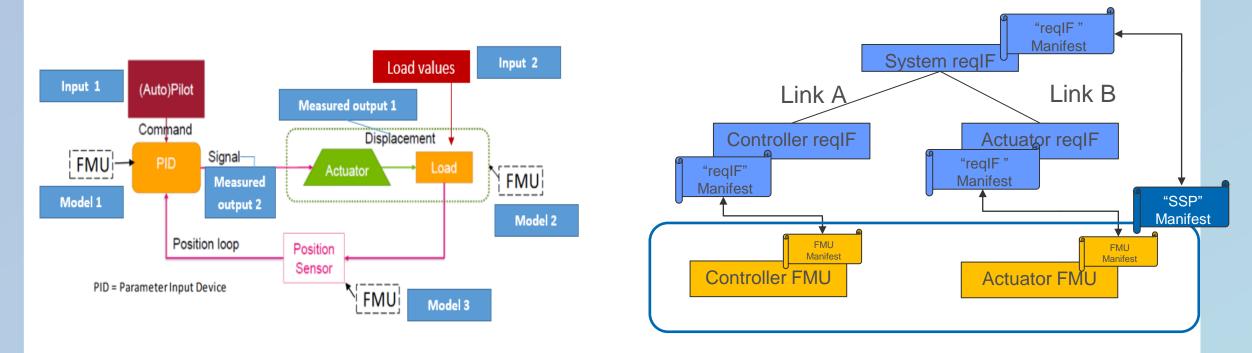


Figure 1. Transformation of needs into requirements (Ryan, 2013).

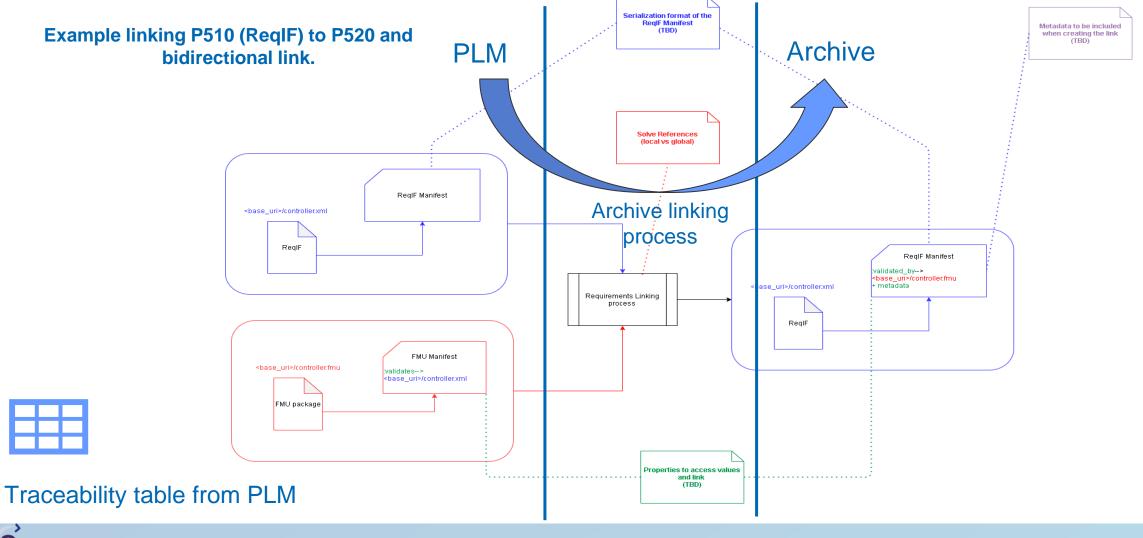



Figure 6.9 Transforming stakeholder requirements directly to subsystems.

DATE


SESE TOUR 2022 _ May 9 to 11 "Systems Engineering in a Sustainable World"

Case Study: linking requirements and physical models (P510 Manifest high-level structure)


- ✓ Traces created and stored in P510 and P520 manifests, subsystem level.
- ✓ Complete use case with requirements information in reqIF/SysML format.
- Extend to include system level P520 (SSP) and P510 (ReqIF) linking.

DATE

SESE TOUR 2022 _ May 9 to 11 "Systems Engineering in a Sustainable World"

DATE

SESE TOUR 2022 _ May 9 to 11 "Systems Engineering in a Sustainable World"

Demo: execution

Loading traces file: .\repo_example\PLM\traceability_table.csv Found: 3 traces. Loading mappings file: mappings.csv

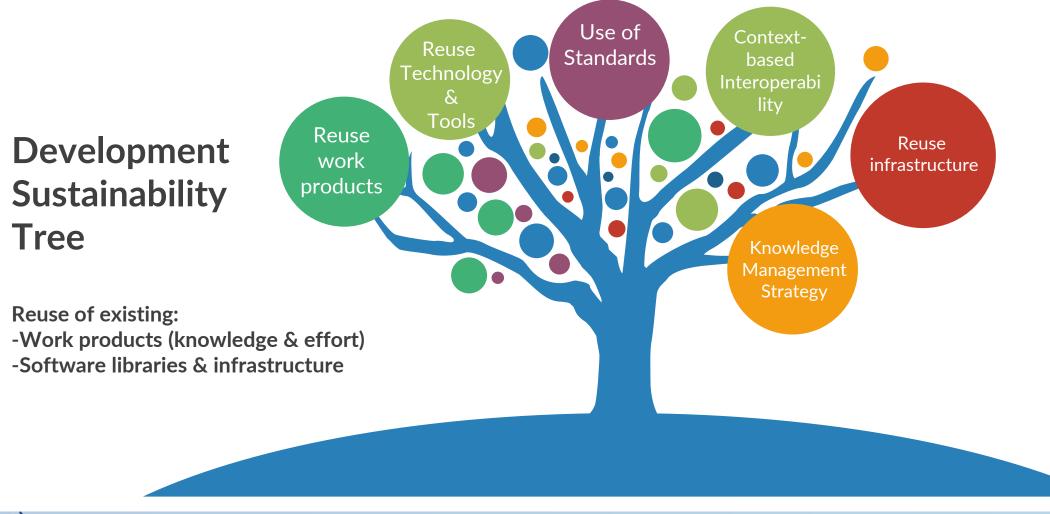
Found: 1 mappings.

Assumption:

Specification and behavioral models exist in the ARCHIVE before linking resolution.

PLM Trace: 1-Specification\Component_2.zip, 2-Design\Component_2.fmu, Validated_by Unpackaging: .\repo_example\ARCHIVE\1-Specification\Component_2.zip Processing: temp\p510_Component_2.xml Valid P510 document: True Trace name: Validated_by Existing traces: 0 Saving updated P510 document: temp\p510_Component_2.xml Packaging directory: temp into file: Component_2.zip Copying temp\Component_2.zip to .\repo_example\ARCHIVE\1-Specification

Consistency checks


- The specification and model files exist in the archive.
- The specification contains an XML compliant with the P510 Schema.
- The trace name in the traceability table is a valid trace name.

Other potential checks:

- All specifications have, at least, a valid link to a P520.
- All models are linked to some specification? (not necessarily)

Making your engineering lifecycle sustainable

Conclusions and further steps

Capture your System lifecycle through interoperable Manifests

Use of P5xx standards (and others)

Traceability as a first-class member of your lifecycle

Provide traceability mechanisms

Avoid vendor-lock in

Utilities to check P5xx

Future extensions to cover any work product

DATE

Family of standards P5xx under development (some of them already approved)

Reuse of other existing specifications for OAIS

Make your engineering process and work products properly available in the long term

Take advantage of technologies & tools

Automate tasks and consistency checks

Acknowledgements

The work leading to these results has received funding from the LOTAR standardization group under the statement of work "Prototype Linking Requirements to FMI Package (2021)".

Learn more: https://lotar-international.org/

DATE

SESE TOUR 2022 _ May 9 to 11 "Systems Engineering i Sustainable World"