PROSTEP IVIP WEB-SEMINARS 2023

Web-Seminars to come:

Date	Topic	and the
24. November	CBPC	

Please visit our website www.prostep.org for more information

APPLICATION BENCHMARKS

- STEP AP242 BM (PDM)
- JT
- REQIF

STANDARDIZATION TOPICS

- OPENNESS OF IT SYSTEMS (CPO)
- STANDARDIZATION STRATEGY
- MAINTENANCE OF INTL STANDARDS
 - STEP AP242
 - JT
 - (SYSML, REQIF, ...)

IMPLEMENTATION SUPPORT TOPICS

- FUNCTIONAL DATA EXCHANGE
- MECHANICAL AND ELECTRICAL INTEROPERABILITY

8

- PDM STRUCTURE DATA EXCHANGE
- REQUIREMENTS INTEROPERABILITY

25 Projects

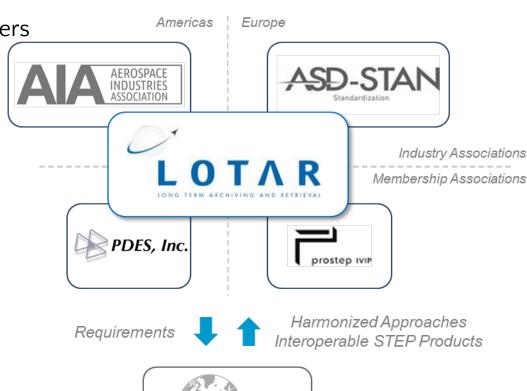
Q.


USER-DRIVEN TOPICS

- SYSTEMS ENGINEERING
- REQUIREMENTS MANAGEMENT
- PROJECT SCHEDULE MANAGEMENT
- VIRTUAL PRODUCT REPRESENTATION
- LONG-TERM DATA RETENTION
- CLOUD BASED PRODUCTION COLLABORATION
- ARTIFICIAL INTELLIGENCE

prostep ivip Web-Seminar 2023

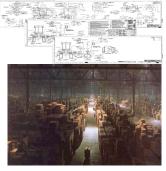
LOTAR

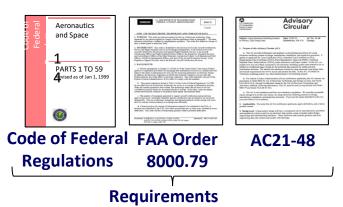


LOTAR Project "On A Page"

www.lotar-international.org

- LOTAR is an international consortium of Aerospace manufacturers
- Prime objective is creation and deployment of the EN/NAS 9300 series of standards for long-term archiving and retrieval of digital data, based on standardized approaches and solutions.
- Integration of LOTAR requirements in software tools ensured by close cooperation with:
 - MBx Implementor Forum (MBx-IF):
 - Facilitated by AFNeT, PDES, Inc., and prostep ivip
 - Consists STEP Translator & Validation Tool vendors for of CAD, CAE, EWIS and PDM
 - Supports AP203, AP209, AP214, AP239, AP242, AP243
 Supports AP242 Business Object Model XML


LOTAR Problem Statement


With the emergence of digital data-based processes, including model-based definition, requirements were identified which predicate the need for a long-term data retention solution(s) to meet the regulatory and business requirements.


Traditional legacy retention and retrieval methods do not support complex digital product definition data.

Past

Paper-based process

Future

Project Description

The project goal is to develop, publish and maintain standards designed to provide the capability to archive and retrieve digital product and technical information, including 3D CAD and PDM data, in a standard neutral form that can be read and reused throughout the product lifecycle.

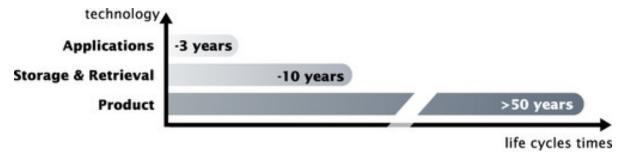
The standards are published as NAS 9300 US (EN 9300 Europe), series and cover both the information content as well as the processes required to ingest, store, administer, manage and access the information.

Key Team Members:

Team Leads and Represented Companies:

- Boeing: J. Klein, J.C. Mendo, S. Galt, A. Bingcang, J. VanHorne
- Lockheed Martin: J. Holmlund, M. Jahadi, C. Simpson
- **GE**: Xuefeng Zhang
- Gulfstream: D. Ganser, L. Nash
- Raytheon: J. Ganguli, I. Parent
- Airbus: B. Feldvoss, P. Duchier, F. Darre, K. Hall

() BOEING



Technical and IT Background

The life cycle of applications and storage technologies has to be considered by setting up a long-term archiving and retrieval standard:

- Continuous development of technical product documentation technology leads to changes in methods and tools, which are used for design, manufacturing, customer support and archiving.
 - New releases of CAD / CAM / CAE / PDM / ... systems offering new functionalities
 - After each migration, the data shall be checked for consistency and completeness.
 - A conversion of the native product data into a more stable format mitigates the risk of information loss and minimizes the cost of migration.

Regulatory requirements for LOTAR aircraft certification and safety

Document & Data Archiving is a legal obligation defined by external requirements and by internal company policies.

EU (EASA) Regulation Requirements EC No 748/ 2012 Part 21A.55

Record keeping for Type Certification

EC No 748/ 2012 Part 21A.105

Record keeping for Modification

Part 21A.107

Continued Airworthiness

EN9100

§4.2.4 Control of Records

US (FAA) Regulation Requirements 14 CFR Part 21B.20

Records of Compliance with requirements for Type Certificate 14 CFR Part 21B.41

Type Certificate (Type Design+ Records of Compliance+Limitations) 14 CFR Part 21B.3

Reporting of failures, malfunctions and defects 14 CFR Part 21B.49

Availability of Type Certificate to FAA or NTSB

The FAA and EASA have promoted efforts to harmonize the regulations, so there are many similarities between them.

What EASA requests for long-term archiving...

The EASA Part-21

(Certification of aircraft and related products, parts and appliances, and of design and production organisation) also contains the requirements for archiving:

21.A.5 Record-keeping

Regulation (EU) 2021/699

All relevant design information, drawings and test reports, including inspection records for the product or article tested for the purpose of certification, shall be held by the holder of a type-certificate, restricted type-certificate, supplemental type-certificate, design change or repair design approval or of an ETSO authorisation at the disposal of the Agency and shall be retained in order to provide the information necessary to ensure the continued airworthiness, continued validity of the operational suitability data and the compliance with the applicable environmental protection requirements of the product or the article.

[applicable from 18 May 2022]

GM1 21.A.5 Repair designs and record keeping

ED Decision 2021/007/R

For repair designs, the record-keeping requirement of point 21.A.5 applies to the data described in AMC 21.A.433(a).

[applicable from 18 May 2022]

...and how Airbus put it into action for the A350 program

In 2009, a CRI was signed in order to agree on the rules for archiving of 3D data. Just a few of them...

Authorities shall have access to these data when required. For practicability reasons it might be the case that this access can only be provided in the Airbus facilities.

For distribution purpose, it must be possible to derive the visualization format from the 3D CAD design data, which must not alter the content and must be fully consistent with the original 3D CAD design definition

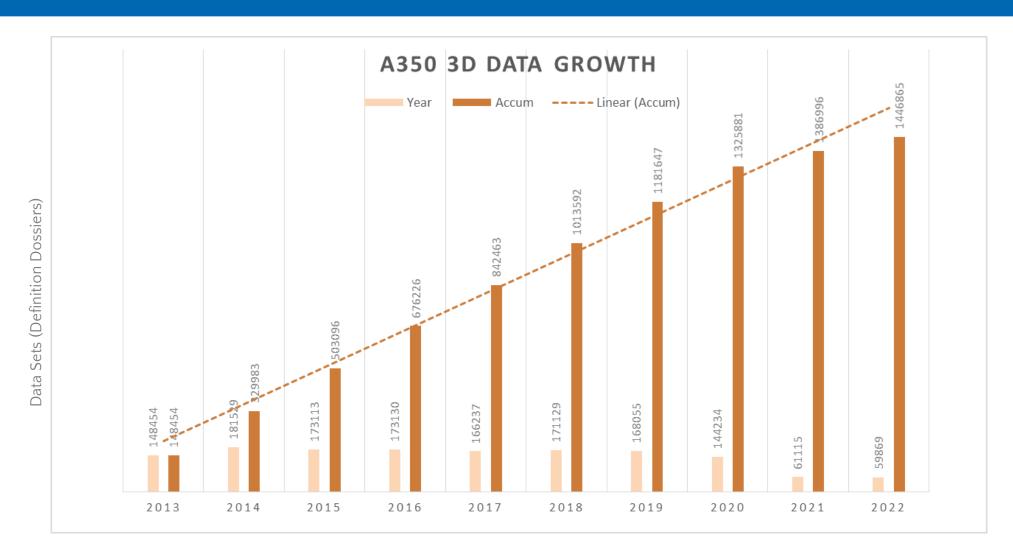
E
European
Aviation
Safety
Agency

Airbus A350

Ref.:	A-02
Issue:	2
Status:	Closed
Date:	13.10.2009
Page:	1 of 4
Next Action:	

Subject: Digital three-dimensional data for Type Design definition

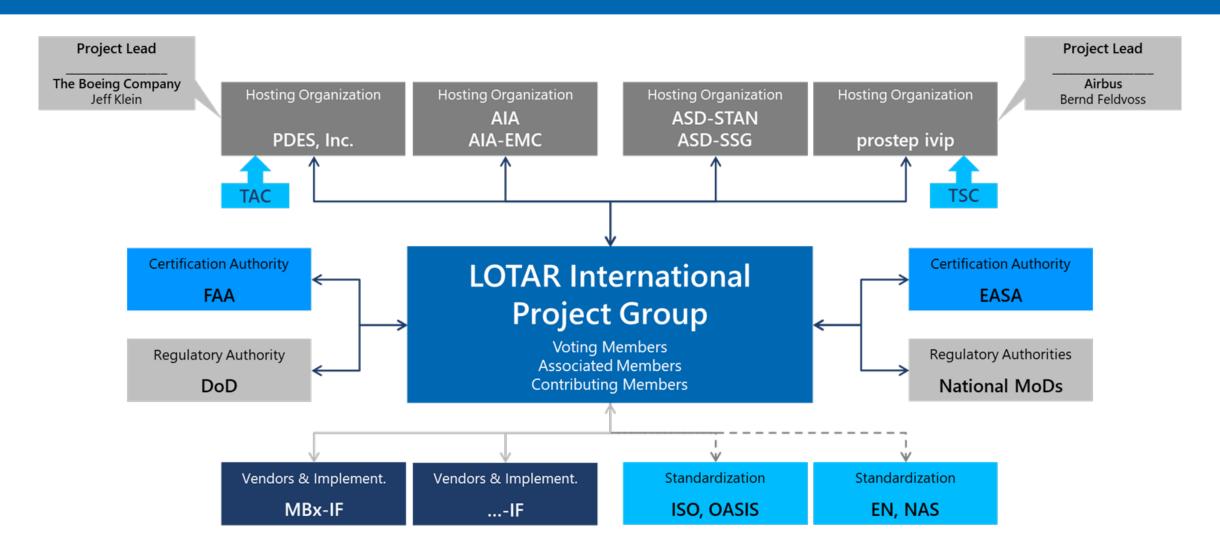
Category: **Interpretative Material**


Part 21A.4, 21A.31(a)(1) and (a)(2), 21A.55, 21A.133 Requirements:

For every 3D CAD design data change, the 3D visualization record must be replaced upon official release of the design data (automatic update of such 3D visualization record is preferred)

The 3D design data must be archived with a reliable and harmonized process so that the original content is preserved. The IT obsolescence shall not endanger these data.

LTA3D Archival Growth (A350)



LOTAR Organization

LOTAR

External View

LOTAR Member Companies

2023



BAE SYSTEMS

LOTAR Working Groups at Present

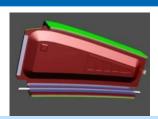
2018 ·

Basic & Common Process Parts

EN/NAS 9300-00x & -01x series

Mechanical 3D CAD with Product and Manufacturing Information (PMI)

EN/NAS 9300-1xx series


STEP AP203 Ed.2, AP214 Ed.3, AP242

Product Data Management (PDM)

EN/NAS 9300-2xx series

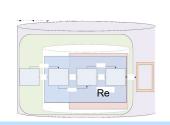
STEP AP239, AP242

2009 ·

Composites and Advanced Manufacturing

EN/NAS 9300-3xx series

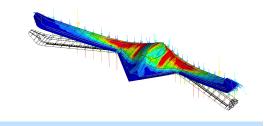
STEP AP203 Ed.2, AP242


Electrical Wiring Harness

EN/NAS 9300-4xx series

STEP AP242 Ed.2

2018 ·

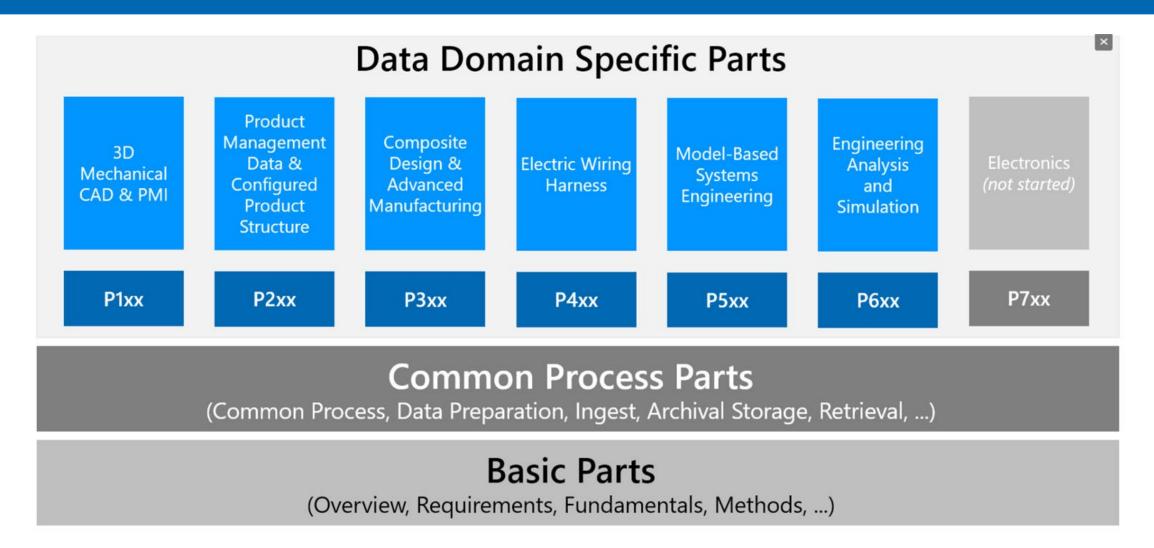

2012 .

Model-Bases Systems Engineering (MBSE)

EN/NAS 9300-5xx series

STEP AP233, AP239, AP242, AP243 FMI, SysML, AADL, ReqIF...

Engineering Analysis and Simulation (EAS) (on hold)

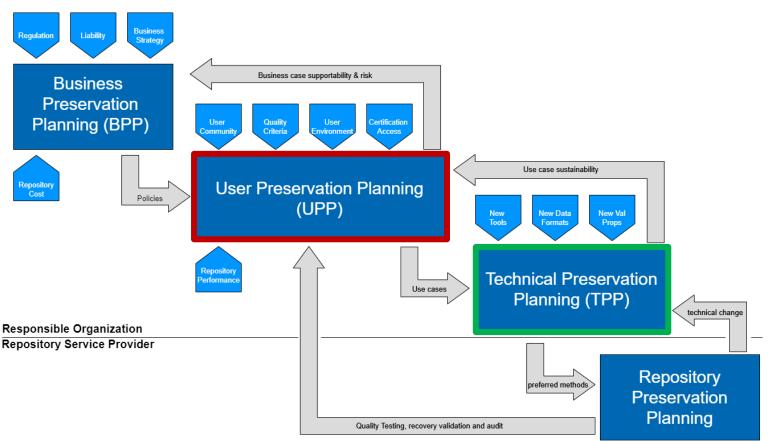

EN/NAS 9300-6xx series

STEP AP209 Ed.2

2014 .

LOTAR Standards Overview

				<u> 2</u>	2 4				125				126				700				128
WP	***	Ti l e	Œι	02	03	Q4	Œι	02	03	Q4	Ot.	02	03	Q4	αt	Q2	03	Q4	αı	Q2	03
1		Basic Parts .																			
11		Structure																			
12		Requirements		R																	
13		Fundamentals and Concepts		R				_	-	_											
14		Authentication and Verification				R															
15 16		Functional Architecture Terms and References				R															
2	007	Common Process Parts				ĸ															
21	010	Overview Data Flow		R																	
22	011	Data Preparation				R															
23		Ingest					R														
24		Andhival Storage					R														
25		Retrieval						R													
26	015	Removal							R												
27	020	Governance & Planning								R											
28	021	Meta Data for Information Package				R															
3		Data Domain Specific Parts																			
31		30 Mechanical CAD with PM																			
311	100	Common Concepts																			
312	110	Explicit CAD Geometry			Ror E																
313	115	Explicit CAD Assembly Structure	E2																		
3.14	120	Explicit CAD Geometry with Graphic PM				Rar E															
3.15	121	Explicit CAD Geometry with Semantic PIM				Rar E															
316	125	Explicit CAD Assembly Structure with Graphic PM				Rar E															
3.17	126	Explicit CAD Assembly Structure with Semantic PM						E1													
318	131	Explicit CAD Geometry and Machining Form Features												EL							
319	132	Structural Joins for Assembly & Installation							E1												
1.10	14<	Kinematics								E1.											
111	1000	Sheet Metal												<u>E1</u>							
112	1000	Welding												E1							
32		PDM																			
3.21	200	Common Concepts			E2																
322	205	Product Data Validation Properties																			
3.23	210	"As Designed" Product Data	ļ					L													
3.24	220	"As Planned" Product Data												<u> 191</u>							
3.25		"As Built / As Maintaine d" Product Data	E1.											E2							
326	240	Product Development								E1	_										
33		Composites																			
331		Fundamentals and Concepts					<u>a</u>														
332		3D Composite Exact Implicit & Approximate Implicit								E1.											
34		Bectrical																			
3.4.1		Fundamentals and Concepts									E2										
3.4.2		Physical Electrical Harnessfor Design & Construction								_											
3.4.3		Electric Wiring Interconnection System Installation		a.																	
3.4.4	430	Electric Wiring Interconnection System Logical Information														E1.					
35		MBSE																			
351		Fundamental sand Concepts	EL			E2or F			_												
3.5.2		Requirements				<u> 11</u>		_	-												
3.5.3		(Requirements), Validation & Verification					<u>a</u>														
355		Analytical model						E2													
3.5.5		Architecture models								E1											
35.6	540	BOM									E1										
36		Engineering Analysis & Simulation																			
3.6.1		Fundamentals and Concepts		1								1.71		- 41		. 1 . 1					
3.6.2		Simulation & Process Data Management	7	ne LOTA	4REngii	neering	& And	rsis Wa	кутсир	is curre	entiy an	naid. N	iext step	os will b	e plann	ed whe	nativit	ies intr	is dom	ain are i	esume
363		Structural Finite Element Analysis	64	- 60	600	61	64		- 62	61	64		- 62	6.	64		- 63	61	64	60	-
WP	###	Ti t e	OT.		03	Q#	ct	02 ~		O#	OT.		08	Q#	OT	•	08	Q‡	đτ		_ 03 ~~
				2	P 4			2	125			7	26			2	127			1	128


LOTAR

Five-Year Roadmap 2024-2028

- Chart indicates planned new releases and updates of LOTAR EN/NAS 9300-xxx documents
- Each Working Group provides an annual update of their planning
- Like a weather forecast, this chart is more accurate in the short term and provides only a rough outlook to the long term
- Latest version is always publicly available on the LOTAR homepage under: "LOTAR Standard – Next Steps"

Different Levels of Preservation Planning

Preservation planning based on EN9300 Part 020 [LOTAR-2012]

- Business Preservation Planning (BPP) develops and documents the long-term data retention strategy of the responsible organization.
- **User Preservation Planning (UPP)** ensures that BPP retention **policies are implemented**.
- Technical Preservation Planning (TPP) provides expertise in the way that product information is developed, both in terms of how processes use software to represent aspects of the product, and the way in which information is represented when being transferred between different software products.
- Repository Preservation Planning (RPP) is concerned with minimizing the costs and risks associated with the way that data is held in the archive.

Preservation Planning Assessments – A350 Periodic

PA Detailed Results

Output from	this step:	
-------------	------------	--

		PA Preparation		PA Overall Res	Conve	ersion	Validation			
AIP Category	Source CAD System	Content Information Standard	PoP Size	Sample Size	PA OK or Warning	PA Succ Rate	Conv OK	Conv Succ Rate	Val OK	Val Succ Rate
CAD 3D Exact Geometry	CATIA V5R18 SP2	AP214 ISO Edition 3	28283	648	648	100.00%	648	100.00%	648	100.00%
CAD 3D Assembly Structure	CATIA V5R18 SP2	AP214 ISO Edition 3	33034	650	650	100.00%	650	100.00%	650	100.00%
CAD 3D Annotation	CATIA V5R18 SP2	AP214 ISO Edition 3	12611	630	630	100.00%	630	100.00%	630	100.00%
CAD 3D Tessellated Geometry	CATIA V5R18 SP2	AP242 ISO	50510	654	654	100.00%	654	100.00%	653	99.85%
CAD 3D Exact Geometry	CATIA V5R21 SP2	AP214 ISO Edition 3	306233	662	662	100.00%	662	100.00%	654	98.79%
CAD 3D Assembly Structure	CATIA V5R21 SP2	AP214 ISO Edition 3	241837	661	661	100.00%	661	100.00%	661	100.00%
CAD 3D Annotation	CATIA V5R21 SP2	AP214 ISO Edition 3	651	328	328	100.00%	328	100.00%	320	97.56%
CAD 3D Tessellated Geometry	CATIA V5R21 SP2	AP242 ISO	276754	661	661	100.00%	661	100.00%	661	100.00%
CAD 3D Exact Geometry	CATIA V5-6R2017 SP2	AP242 ISO Edition 1	80928	658	656	99.70%	656	99.70%	654	99.39%
CAD 3D Assembly Structure	CATIA V5-6R2017 SP2	AP242 ISO Edition 1	64429	656	656	100.00%	656	100.00%	656	100.00%
CAD 3D Annotation	CATIA V5-6R2017 SP2	AP242 ISO Edition 1	106870	659	659	100.00%	659	100.00%	659	100.00%
CAD 3D Tessellated Geometry	CATIA V5-6R2017 SP2	AP242 ISO Edition 1	75684	657	657	100.00%	657	100.00%	657	100.00%
			1277824	7524	7522	99.97%	7522	99.97%	7503	99.72%

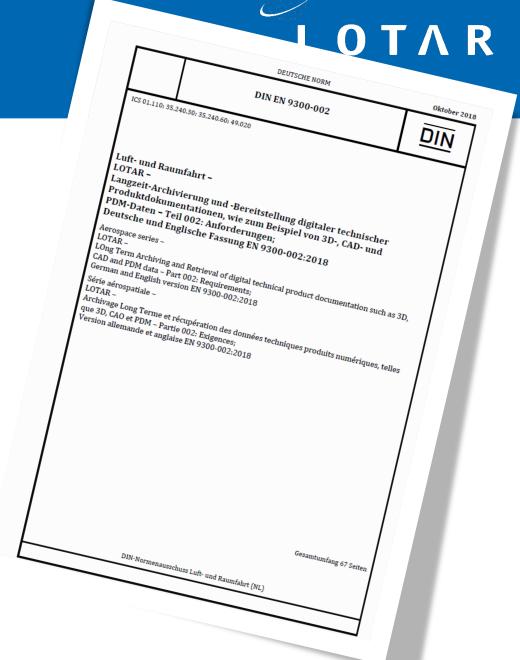
Summary

Only 2 retrieval errors:

2 Exact Geometry Errors already during ingest: Design defect - Flexible equipment - bad solid non-manifold (edge shared with more than 3 faces) - Tightener

In addition we faced only a few retrieval warnings (validation KO) because of minor design defects and because accuracy of CatiaV5R27 improvements in comparison with CatiaV5R21 used during ingestion

Action plan: 2 models to be re-designed.


Audit and EN9300 Compliance

To prove to EASA that the record keeping requirements are met, AIRBUS undergoes an external audit every two years

Based on:

- EN9300-002: LOTAR Requirements
- EN9300-003: LOTAR Fundamentals and Concepts
- EN9300-100: Common Concepts for LTA&R of 3D MCAD Data
- EN9300-110: CAD Mechanical 3D Explicit Geometry
- EN9300-115: Explicit CAD Assembly Structure
- EN9300-120: CAD 3D Explicit Geometry with Graphic PMI

LTA&R: Long-Term Archiving & Retrieval MCAD: Mechanical Computer Aided Design PMI: Product & Manufacturing Information

Example Requirement: Validation Information

From EN9300-002: LOTAR Fundamentals & Processes

EN 9300-002:2018 (E)

7.3.1 Data Preparation

Data preparation covers the phase of preparation for submission, and is outside the scope of the OAIS model. This has the following detailed requirements:

When technically feasible, the Producer shall check the quality control criteria (e.g., validation properties) of the information to be preserved. The validation report of each source product information has to be created, as associated input to the Ingestion process of the Archive.

Source: FN9300-00

Example Requirement: Validation Information

Corresponding AIRBUS Process Definition

AIRBUS

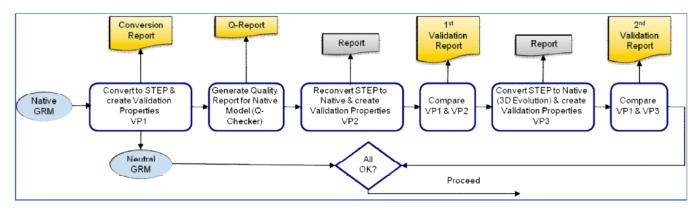


Figure 2-5: Conversion/validation process overview

The CATIA STEP converter generates the STEP file that contains CAD entities with Validation Properties (VP) computed in the original CAD system. Then the STEP file is imported in two validation tools CATIA (loop validation) and 3D Evolution (second validation) that compute the VP deviation (difference between computed and read VP from STEP).

- Both CAD validation tools are using different algorithms for VP calculation and additionally some of them are not customizable. That's why there can be differences in each validation report.
- Airbus uses the thresholds advised by the CAx Implementor Forum [CAx-IF]
- The same thresholds are applicable for both Ingest and Retrieval.

Source: AIRBUS Procedural Documentation AIRINA v1

Audit and EN9300 Compliance

AIRINA Re-Certification Audit will take place in June 2023

AIRBUS A350 is not the only example of the LOTAR standard

(*): Plan to migrate to STEP AP 242 ed1 when possible

being actively used in industry:

		NAS/	EN 9300 LOT					
A&D company	Area of application	Scope	CAD 3D Exact Geometry	CAD 3D Tessellated Geometry	CAD 3D PMI Present.	CAD Assembly structure	ISO formats	Project status
			Part	Part	Part	Part P115	ISO 10303 "STED"	
Airbus Commercial	A350	Electrical Harnes, Mechanical System & Bracket Installation, Cabin	Yes	Yes	Yes	Yes	AP214 Ed.3 (*) + AP242 Ed.1	PROD
Airbus Commercial	BelugaXL	Electrical Harnes, Mechanical System & Bracket Installation,	Yes	Yes	Yes	Yes	AP242 Ed.1	PROD
Airbus Defence & Space		"Full 3D" model based	Yes	Yes	Yes	Yes	AP242 Ed.1	DEV
Dassault- Aviation	Falcon 7X	complete definition of the aircraft (airframe, brackets, pipes, harness)	Yes	No	Yes	Yes	AP214 Ed.3 (*)	PROD
Snecma	New parts of engines	3D definition with PMI of new mechanical part	Yes	No	Yes	No	AP214 Ed.3 (*)	PROD
Boeing	787	3D definition with PMI with assemblies	Yes	No	Yes	Yes	AP203 Ed.2 (*) + U3D PDF	PROD
Gulfstream	G500, G600, G650	3D mBD mechanical, electrical and composite	Yes	No	Yes	No	AP203 Ed.2 (*)	PROD
Lockheed- Martin	F35	3D mBD mechanical, electrical and composite	Yes	No	Yes	Yes	AP203 Ed.2 + AP242 Ed.1	PLANNED
EMBRAER	Legacy 450 & Legacy 500	complete definition of the aircraft	Yes	No	Yes	Yes	AP242 Ed.1	DEV
MTU Aero Engines	New parts of engines	3D definition without PMI of new mechanical part	Yes	No	No	In Prep.	AP214 Ed.3	PROD
	PLANNED DEV PROD	: project planned : project in development : project on production						

NAS / EN 9300 LOTAR parts (CAD)

Die Zertifizierungsstelle der TÜV Informationstechnik GmbH bescheinigt hiermit dem Unternehmen

AIRBUS S.A.S 1 Rond Point Maurice Bellonte 31707 Biagnac, France

für die eingesetzte Dokumentenmanagement- und Archivlösung

AIRINA

die Erfüllung aller anwendbaren Anforderungen der Prüfkriterien für Dokumentenmanagementlösungen

PK-DML, 5. Auflage 2019, EN 9300 series*1).

*1) Angewandte Level: Verifikation Level 0 & Validation Level 1

Die Prüfanforderungen sind in der Anlage zum Zertifikat zusammenfassend aufgelistet.

Die Anlage ist Bestandteil des Zertifikats und besteht aus 11 Seiten. Dieses Zertifikat gilt nur in Verbindung mit dem Prüfbericht.

© TÜVIT - TÜV NORD GROUP - www.tuvit.de

Zertifikatsgültigkeit: 30.07.2021 – 30.07.2023

17.2021 UN Sul

TÜV Informationstechnik GmbH TÜV NORD GROUP

LOTAR - Summary

- LOTAR is an industry consortium whose purpose is to develop process standards focused on the preservation of digital data required to be retained for long periods of time.
- Coordinate closely with implementor forums to develop test cases and recommended practices.
- Participants are primarily from the aerospace industry.
- Driven by business, regulatory, and customer requirements.
- Working groups meet regularly online.
- Gather for in depth quarterly meetings. Alternate in person and online meetings.
- Look forward to seeing you at our next meeting.
- If you are interested in participating, submit your information through the LOTAR website here:
 - https://lotar-international.org/why-lotar/joining-lotar/

LOTAR – Next Actions

- Leverage industry initiatives around digital engineering / digital thread
- Build on MBSE momentum
- Restart Engineering Analysis and Simulation
- Consider new domains such as software and circuit design
- Build on integration with Implementor Forums
- Activities planned:
 - 2023 Q4 Online Meeting
 - 2024 Q1 Meeting in Person Darmstadt, DE, at prostep ivip
 - 2024 Q2 Online Meeting
 - 2024 Q3 Meeting in Person Location TBD (USA)
 - 2024 Q4 Online Meeting

LOTAR Homepage: www.lotar-international.org

Any questions?

Thank you for your interest.

Please visit our next web-seminar:

Date: 24. November 2023

Topic: CBPC

For more information please visit www.prostep.org

